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ABSTRACT. Here we study the multivariate quantitaive approximation of multiple time separat-

ing random functions over a RN , N ∈ N, by the normalized bell and squashing type multivariate

neural network operators. Activation functions here are of compact support. These approximations

are derived by establishing Jackson type multivariate inequalities involving the multivariate modulus

of continuity of the engaged random function or its high order partial derivatives. The approxima-

tions are pointwise and with respect to the LP norm. The feed-forward neural networks are with

one hidden layer. We finish with a variety of interesting applications.
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1. Introduction

The neural network multivariate Cardaliaguet-Euvrard operators were first intro-

duced and studied thoroughly in [2], where the authors among many other interesting

things proved that these multivariate operators converge uniformly on compact, to the

unit over continuous and bounded multivariate functions. The multivariate normal-

ized “bell” and “squashing” type operators (1) and (15) were motivated and inspired

by the “bell” and “squashing” functions of [2]. The work in [2] is qualitative where

the used multivariate bell-shaped function is general. However, though the work of

the first author is greatly motivated by [2], it is quantitative and the used multivari-

ate “bell-shaped” and “squashing” functions are of compact support, see [1], ch.2.

Here we use a set of multivariate inequalities giving close upper bounds to the errors

in approximating the unit operator by the above multidimensional neural network

induced operators, see [1], ch.2. These are mainly pointwise estimates involving the
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first multivariate modulus of continuity of the engaged multivariate continuous func-

tion or its partial derivatives of some fixed order. The above mentioned theory is

applied to perform quantitative approximations of multiple time separating random

functions by neural networks. We finish with several interesting applications.

Specific motivations come by:

1. stationary Gaussian processes with an explicit representation such as

Xt = cos (αt) ξ1 + sin (αt) ξ2, α ∈ R,

where ξ1, ξ2 are independent random variables with the standard normal distri-

bution, see [3],

2. the “Fourier model” of a stationary process, see [4].

2. Quantitative Convergence by Multivariate Neural Network Operators

Here we follow [1], ch.2.

Definition 2.1. A function b : R → R is said to be bell-shaped if b belongs to L1

and its integral is nonzero, if it is nondecreasing on (−∞, a) and nonincreasing on

[a,+∞), where a belongs to R. In particular b (x) is a nonnegative number and at a,

b takes a global maximum; it is the center of the bell-shaped function. A bell-shaped

function is said to be centered if its center is zero.

Definition 2.2. A function b : Rd → R (d ≥ 1) is said to be a d-dimensional bell-

shaped function if it is integrable and its integral is not zero, and for all i = 1, ..., d,

t → b (x1, ..., t, ..., xd)

is a centered bell-shaped function, where −→x := (x1, ..., xd) ∈ Rd arbitrary.

Example 2.3. Let b be a centered bell-shaped function over R, then (x1, ..., xd) →
b (x1) ...b (xd) is a d-dimensional bell-shaped function.

Assumption 2.4. Here b (−→x ) is of compact support B :=
∏d

i=1 [−Ti, Ti], Ti > 0 and

it may have jump discontinuities there. Let f : Rd → R be a continuous and bounded

function or a uniformly continuous function.

In [1], ch.2, the first author studied the pointwise convergence with rates over Rd,

to the unit operator, of the ”normalized bell” multivariate neural network operators

Mn (f) (
−→x ) :=

(1)

∑n2

k1=−n2 ...
∑n2

kd=−n2 f
(
k1
n
, ..., kd

n

)
b
(
n1−α

(
x1 − k1

n

)
, ..., n1−α

(
xd − kd

n

))∑n2

k1=−n2 ...
∑n2

kd=−n2 b
(
n1−α

(
x1 − k1

n

)
, ..., n1−α

(
xd − kd

n

)) ,

where 0 < α < 1 and −→x := (x1, ..., xd) ∈ Rd, n ∈ N. Clearly Mn is a positive linear

operator.
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The terms in the ratio of multiple sums (1) can be nonzero iff simultaneously∣∣∣∣n1−α

(
xi −

ki
n

)∣∣∣∣ ≤ Ti, all i = 1, ..., d,

i.e.,
∣∣xi − ki

n

∣∣ ≤ Ti

n1−α , all i = 1, ..., d, iff

(2) nxi − Tin
α ≤ ki ≤ nxi + Tin

α, all i = 1, ..., d.

To have the order

(3) −n2 ≤ nxi − Tin
α ≤ ki ≤ nxi + Tin

α ≤ n2,

we need n ≥ Ti + |xi|, all i = 1, ..., d. So (3) is true when we take

(4) n ≥ max
i∈{1,...,d}

(Ti + |xi|) .

When −→x ∈ B in order to have (3) it is enough to assume that n ≥ 2T ∗, where

T ∗ := max{T1, ..., Td} > 0. Consider

Ĩi := [nxi − Tin
α, nxi + Tin

α] , i = 1, ..., d, n ∈ N.

The length of Ĩi is 2Tin
α. By Proposition 1 of [1], Ch.2, we get that the cardinality

of ki ∈ Z that belong to Ĩi := card (ki) ≥ max (2Tin
α − 1, 0), any i ∈ {1, ..., d}. In

order to have card (ki) ≥ 1, we need 2Tin
α − 1 ≥ 1 iff n ≥ T

− 1
α

i , any i ∈ {1, ..., d}.

Therefore, a sufficient condition in order to obtain the order (3) along with the

interval Ĩi to contain at least one integer for all i = 1, ..., d is that

(5) n ≥ max
i∈{1,...,d}

{
Ti + |xi| , T

− 1
α

i

}
.

Clearly as n → +∞ we get that card (ki) → +∞, all i = 1, ..., d. Also notice that

card (ki) equals to the cardinality of integers in [⌈nxi − Tin
α⌉ , [nxi + Tin

α]] for all

i = 1, ..., d. Here, [·] denotes the integral part of the number while. ⌈·⌉ denotes its

ceiling.

From now on, in this article we will assume (5). Furthermore it holds

(6) (Mn (f)) (
−→x ) =

∑[nx1+T1nα]
k1=⌈nx1−T1nα⌉ ...

∑[nxd+Tdn
α]

kd=⌈nxd−Tdnα⌉ f
(
k1
n
, ..., kd

n

)
V (−→x )

·

b

(
n1−α

(
x1 −

k1
n

)
, ..., n1−α

(
xd −

kd
n

))
all −→x := (x1, ..., xd) ∈ Rd, where

V (−→x ) :=

[nx1+T1nα]∑
k1=⌈nx1−T1nα⌉

...

[nxd+Tdn
α]∑

kd=⌈nxd−Tdnα⌉

b

(
n1−α

(
x1 −

k1
n

)
, ..., n1−α

(
xd −

kd
n

))
.



4 GEORGE A. ANASTASSIOU AND DIMITRA KOULOUMPOU

Denote by ∥·∥∞ the maximum norm on Rd, d ≥ 1. So if
∣∣n1−α

(
xi − ki

n

)∣∣ ≤ Ti,

all i = 1, ..., d, we get that ∥∥∥∥∥−→x −
−→
k

n

∥∥∥∥∥
∞

≤ T ∗

n1−α
,

where
−→
k := (k1, ..., kd) .

Definition 2.5. Let f : Rd → R. We call

(7) ω1 (f, h) := sup
all −→x ,−→y :

∥−→x−−→y ∥∞
≤h

|f (−→x )− f (−→y )| ,

where h > 0, the first modulus of continuity of f.

Here we present the first main result.

Theorem 2.6. Let −→x ∈ Rd; then

(8) |(Mn (f)) (
−→x )− f (−→x )| ≤ ω1

(
f,

T ∗

n1−α

)
.

Inequality (8) is attained by constant functions.

In case f is uniformly continuous, then inequality (8) gives Mn (f) (
−→x ) → f (−→x ),

pointwise with rates, as n → +∞, where −→x ∈ Rd, d ≥ 1.

Proof. see [1], ch.2.

The second main result follows.

Theorem 2.7. Let −→x ∈ Rd, f ∈ CN
(
Rd
)
, N ∈ N, such that all of its partial

derivatives fα̃ of order N , α̃ : |α̃| = N , are uniformly continuous or continuous and

bounded. Then,

(9) |(Mn (f)) (
−→x )− f (−→x )| ≤

N∑
j=1

(T ∗)j

j!nj(1−α)

( d∑
i=1

∣∣∣∣ ∂

∂xi

∣∣∣∣
)j

f (−→x )

+

(T ∗)N dN

N !nN(1−α)
· max
α̃:|α̃|=N

ω1

(
fα̃,

T ∗

n1−α

)
.

Inequality (9) is attained by constant functions. Also, inequality (9) gives us with

rates the pointwise convergence of Mn (f) → f over Rd, as n → +∞.

Proof. see [1], ch.2.
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Corollary 2.8. Here, additionally assume that b is continuous on Rd. Let

Γ :=
d∏

i=1

[−γi, γi] ⊂ Rd, γi > 0,

and take

n ≥ max
i∈{1,...,d}

(
Ti + γi, T

− 1
α

i

)
.

Consider p ≥ 1. Then,

(10) ∥Mnf − f∥p,Γ ≤ ω1

(
f,

T ∗

n1−α

)
2

d
p

d∏
i=1

γ
1
p

i ,

attained by constant functions. From (10), we get the Lp convergence of Mnf to f

with rates.

Corollary 2.9. Same assumptions as in Corollary 2.8. Then

∥Mnf − f∥p,Γ ≤


N∑
j=1

(T ∗)j

j!nj(1−α)

∥∥∥∥∥∥
(

d∑
i=1

∣∣∣∣ ∂

∂xi

∣∣∣∣
)j

f

∥∥∥∥∥∥
p,Γ

+

(11)
(T ∗)N dN

N !nN(1−α)
· max
α̃:|α̃|=N

ω1

(
fα̃,

T ∗

n1−α

)
2

d
p

d∏
i=1

γ
1
p

i ,

attained by constants. Here, from (11), we get again the Lp convergence of Mn (f) to

f with rates.

3. The Multivariate ”Normalized Squashing Type Operators” and their

Convergence to the Unit with Rates

We give the following definition

Definition 3.1. Let the non-negative function S : Rd → R, d ≥ 1, S has compact

support B :=
∏d

i=1 [−Ti, Ti], Ti > 0 and is nondecreasing there for each coordinate.

S can be continuous only on either
∏d

i=1(−∞, Ti] or B and can have jump disconti-

nuities. We call S the multivariate ”squashing function” (see also [2], ch.2).

Example 3.2. Let Ŝ as above when d = 1. Then,

S (−→x ) := Ŝ (x1) ...Ŝ (xd) ,
−→x := (x1, ..., xd) ∈ Rd,

is a multivariate ”squashing function”.

Let f : Rd → R be either uniformly continuous or continuous and bounded

function.

For −→x ∈ Rd, we define the multivariate ”normalized squashing type operator”,

Ln (f) (
−→x ) :=
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(12)

∑n2

k1=−n2 ...
∑n2

kd=−n2 f
(
k1
n
, ..., kd

n

)
S
(
n1−α

(
x1 − k1

n

)
, ..., n1−α

(
xd − kd

n

))
W (−→x )

,

where 0 < α < 1 and n ∈ N :

(13) n ≥ max
i∈{1,...,d}

{
Ti + |xi| , T

− 1
α

i

}
,

and

(14) W (−→x ) :=
n2∑

k1=−n2

...

n2∑
kd=−n2

S

(
n1−α

(
x1 −

k1
n

)
, ..., n1−α

(
xd −

kd
n

))
.

Obviously Ln is a positive linear operator. It is clear that

(15) (Ln (f)) (
−→x ) =

[n−→x+
−→
T nα]∑

−→
k =⌈n−→x−

−→
T nα⌉

f
(−→

k
n

)
Φ (−→x )

S

(
n1−α

(
−→x −

−→
k

n

))
,

where

(16) Φ (−→x ) :=

[n−→x+
−→
T nα]∑

−→
k =⌈n−→x−

−→
T nα⌉

S

(
n1−α

(
−→x −

−→
k

n

))
.

Here, we study the pointwise convergence with rates of (Ln (f)) (
−→x ) → f (−→x ), as

n → +∞, −→x ∈ Rd.

This is given by the next result.

Theorem 3.3. Under the above terms and assumptions, we find that

(17) |(Ln (f)) (
−→x )− f (−→x )| ≤ ω1

(
f,

T ∗

n1−α

)
.

Inequality (17) is attained by constant functions. In case f is uniformly continuous,

then (17) give us the pointwise convergence Lnf → f as n → ∞.

We also give

Theorem 3.4. Let −→x ∈ Rd, f ∈ CN
(
Rd
)
, N ∈ N, such that all of its partial

derivatives fα̃ of order N , α̃ : |α̃| = N , are uniformly continuous or continuous are

bounded. Then,

(18) |(Ln (f)) (
−→x )− f (−→x )| ≤

N∑
j=1

(T ∗)j

j!nj(1−α)

( d∑
i=1

∣∣∣∣ ∂

∂xi

∣∣∣∣
)j

f (−→x )

+

(T ∗)N dN

N !nN(1−α)
· max
α̃:|α̃|=N

ω1

(
fα̃,

T ∗

n1−α

)
.

Inequality (18) is attained by constant functions. Inequality (18) gives us with rates

the pointwise convergence of Ln (f) → f over Rd, as n → +∞.
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Note 3.5. We see that

Mn (1) = Ln (1) = 1.

4. Multiple Time Separating Random Functions

Let (Ω,F , P ) be a probability space, ω ∈ Ω;Y1, Y2, . . . , Ym,m ∈ N, be real-valued
random variables on Ω with finite expectations, and h1(t), h2(t), . . . hm(t) : RN → R.
Clearly, then

(19) Y (t, ω) :=
m∑
i=1

hi(t)Yi(ω), t ∈ RN ,

is a quite common time separating random function.

We can assume that hi ∈ Cr(RN). Consequently, we have that the expectation

(20) (EY ) (t) =
m∑
i=1

hi(t)EYi ∈ C
(
RN
)
or Cr

(
RN
)
.

A classical example of multiple time separating process is(
sin

(
N∏
j=1

tj

))
Y1(ω) +

(
cos

(
N∏
j=1

tj

))
Y2(ω), tj ∈ R,

for j = 1, . . . , N .

Notice that

∣∣∣∣∣sin
(

N∏
j=1

tj

)∣∣∣∣∣ ≤ 1 and

∣∣∣∣∣cos
(

N∏
j=1

tj

)∣∣∣∣∣ ≤ 1.

Another typical example is

(21)

(
sinh

(
N∏
j=1

tj

))
Y1(ω) +

(
cosh

(
N∏
j=1

tj

))
Y2(ω), tj ∈ R, for j = 1, . . . , N.

In this article we will apply the main results of Sections 2 and 3, to f(t) = (EY ) (t).

We will finish with several applications.

5. Main Results

We present the following stochastic approximation result.

Theorem 5.1. Let (EY ) (t) as in (20), t ∈ RN , N ≥ 1. Then,

(22) |(Mn (EY )) (t)− (EY ) (t)| ≤ ω1

(
(EY ) ,

T ∗

n1−α

)
.

Inequality (22) is attained by constant functions.

In case hi, i = 1, . . . ,m are uniformly continuous, then inequality (22) gives

Mn (EY ) (t) → (EY ) (t), pointwise with rates, as n → +∞, where t ∈ RN , N ≥ 1.

Proof. From Theorem 2.6.

The next Theorem it follows
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Theorem 5.2. Let (EY ) (t) similar to (20), t = (t1, t2, . . . , tN) ∈ RN ,with hi ∈
CK

(
RN
)
, K,N ∈ N, with N ≥ 1, such that all of its partial derivatives hi,α̃ of order

K, α̃ : |α̃| = K, are uniformly continuous or continuous and bounded, for every

i = 1, . . . ,m. Then,

(23) |(Mn (EY )) (t)− (EY ) (t)| ≤
K∑
j=1

(T ∗)j

j!nj(1−α)

( N∑
i=1

∣∣∣∣ ∂∂ti
∣∣∣∣
)j

(EY ) (t)

+

(T ∗)K NK

K!nK(1−α)
· max
α̃:|α̃|=K

ω1

(
(EY )α̃ ,

T ∗

n1−α

)
.

Inequality (23) is attained by constant functions. Inequality (23) gives us with rates

the pointwise convergence of Mn (EY ) → (EY ) over RN , as n → +∞.

Proof. Notice that all of the partial derivatives of (EY )α̃ of order K, α̃ : |α̃| = K, are

uniformly continuous or continuous and bounded. Hence the result is coming from

Theorem 2.7.

Corollary 5.3. Here, additionally assume that b is continuous on RN . Let

Γ :=
N∏
i=1

[−γi, γi] ⊂ RN , γi > 0,

and take

n ≥ max
i∈{1,...,N}

(
Ti + γi, T

− 1
α

i

)
.

Consider p ≥ 1. Then,

(24) ∥Mn (EY )− (EY )∥p,Γ ≤ ω1

(
(EY ) ,

T ∗

n1−α

)
2

N
p

N∏
i=1

γ
1
p

i ,

attained by constant functions. From (24), we get the Lp convergence of Mn (EY ) to

(EY ) with rates.

Proof. From Corollary 2.8.

Corollary 5.4. Same assumptions as in Corollary 5.3. Then

∥Mn (EY )− (EY )∥p,Γ ≤


K∑
j=1

(T ∗)j

j!nj(1−α)

∥∥∥∥∥∥
(

N∑
i=1

∣∣∣∣ ∂∂ti
∣∣∣∣
)j

(EY )

∥∥∥∥∥∥
p,Γ

+

(25)
(T ∗)K NK

K!nK(1−α)
· max
α̃:|α̃|=K

ω1

(
(EY )α̃ ,

T ∗

n1−α

)
2

N
p

N∏
i=1

γ
1
p

i ,

attained by constants. Here, from (25), we get again the Lp convergence of Mn (EY )

to (EY ) with rates.
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Proof. From Corollary 2.9.

Next we give the next result.

Theorem 5.5. Let (EY ) (t) similar to (20), t = (t1, t2, . . . , tN) ∈ RN ,with hi are

uniformly continuous or continuous and bounded, for every i = 1, . . . ,m. Then, under

the terms of Definition 3.1, we find that

(26) |(Ln (EY )) (t)− (EY ) (t)| ≤ ω1

(
(EY ) ,

T ∗

n1−α

)
.

Inequality (26) is attained by constant functions. In case hi, i = 1, 2, . . . ,m are uni-

formly continuous, then (26) give as the pointwise convergence LnEY → EY as

n → ∞.

Proof. Notice that (EY ) is uniformly continuous or continuous and bounded. Hence

the result is coming from Theorem 3.3.

We also give

Theorem 5.6. Let (EY ) (t) similar to (20), t = (t1, t2, . . . , tN) ∈ RN ,with hi ∈
CK

(
RN
)
, K,N ∈ N, with N ≥ 1, such that all of its partial derivatives hi,α̃ of order

K, α̃ : |α̃| = K, are uniformly continuous or continuous and bounded, for every

i = 1, . . . ,m. Then,

(27) |(Ln (EY )) (t)− (EY ) (t)| ≤
K∑
j=1

(T ∗)j

j!nj(1−α)

( N∑
i=1

∣∣∣∣ ∂∂ti
∣∣∣∣
)j

(EY ) (t)

+

(T ∗)K NK

K!nK(1−α)
· max
α̃:|α̃|=K

ω1

(
(EY )α̃ ,

T ∗

n1−α

)
.

Inequality (27) is attained by constant functions. Inequality (27) gives us with rates

the pointwise convergence of Ln (EY ) → (EY ) over RN , as n → +∞.

Proof. Notice that all of the partial derivatives of (EY )α̃ of order K, α̃ : |α̃| = K, are

uniformly continuous or continuous and bounded. Hence the result is coming from

Theorem 3.4.

6. Applications

For the next applications we consider (Ω, F, P ) be a probability space and Y1, Y2

be real valued random variables on Ω with finite expectations. We consider the

stochastic processes Zi(t, ω) for i = 1, 2, . . . , 6, where t = (t1, . . . , tN) ∈ RN and

ω ∈ Ω as follows:

(28) Z1(t, ω) = sin

(
ξ

N∑
j=1

tj

)
Y1(ω) + cos

(
ξ

N∑
j=1

tj

)
Y2(ω),
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where ξ > 0 is fixed;

(29) Z2(t, ω) = sech

(
µ

N∑
j=1

tj

)
Y1(ω) + tanh

(
µ

N∑
j=1

tj

)
Y2(ω),

where µ > 0 is fixed.

Here sechx := 1

cosh

(
N∑

j=1
xj

) = 2

exp

(
N∑

j=1
xj

)
+exp

(
−

N∑
j=1

xj

) , x = (x1, . . . , xn) ∈ RN.

(30) Z3(t, ω) =
1

1 + exp

(
−ℓ1

N∏
j=1

tj

)Y1(ω) +
1

1 + exp

(
−ℓ2

N∏
j=1

tj

)Y2(ω),

where ℓ1, ℓ2 > 0 are fixed;

The expectations of Zi, i = 1, 2, 3 are

(31) (EZ1) (t) = sin

(
ξ

N∑
j=1

tj

)
E(Y1) + cos

(
ξ

N∑
j=1

tj

)
E(Y2),

(32) (EZ2) (t) = sech

(
µ

N∑
j=1

tj

)
E(Y1) + tanh

(
µ

N∑
j=1

tj

)
E(Y2),

(33) (EZ3) (t) =
1

1 + exp

(
−ℓ1

N∏
j=1

tj

)E(Y1) +
1

1 + exp

(
−ℓ2

N∏
j=1

tj

)E(Y2),

For the next (EZi) (t), i = 1, 2, 3 are as defined in relations between (31) and (33)

respectively.

We present the following result.

Proposition 6.1. Let t ∈ RN , N ≥ 1, Then for i = 1, 2, 3 ,

(34) |(Mn (EZi)) (t)− (EZi) (t)| ≤ ω1

(
(EZi) ,

T ∗

n1−α

)
.

Inequality (34) is attained by constant functions. Inequality (34) givesMn (EZi) (t) →
(EZi) (t), pointwise with rates, as n → +∞, where t ∈ RN , N ≥ 1.

Proof. From Theorem 5.1.

Next we present

Proposition 6.2. Let K,N ∈ N with N ≥ 1, t = (t1, t2, . . . , tN) ∈ RN , Then

(35) |(Mn (EZ1)) (t)− (EZ1) (t)| ≤
K∑
j=1

(T ∗)j

j!nj(1−α)

( N∑
i=1

∣∣∣∣ ∂∂ti
∣∣∣∣
)j

(EZ1) (t)

+
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(T ∗)K NK

K!nK(1−α)
· max
α̃:|α̃|=K

ω1

(
(EZ1)α̃ ,

T ∗

n1−α

)
.

Inequality (35) is attained by constant functions. Also, (35) gives us with rates the

pointwise convergence of Mn (EZ1) → (EZ1) over RN , as n → +∞.

Proof. From Theorem 5.2.

Corollary 6.3. Here, additionally assume that b is continuous on RN . Let

Γ :=
N∏
i=1

[−γi, γi] ⊂ RN , γi > 0,

and take

n ≥ max
i∈{1,...,N}

(
Ti + γi, T

− 1
α

i

)
.

Consider p ≥ 1. Then for j = 1, 2, 3,

(36) ∥Mn (EZj)− (EZj)∥p,Γ ≤ ω1

(
(EZj) ,

T ∗

n1−α

)
2

N
p

N∏
i=1

γ
1
p

i ,

attained by constant functions. From (36), we get the Lp convergence of Mn (EZj) to

(EZj) with rates.

Proof. From Corollary 5.3.

Corollary 6.4. Same assumptions as in Corollary 6.3. Then

∥Mn (EZ1)− (EZ1)∥p,Γ ≤


K∑
j=1

(T ∗)j

j!nj(1−α)

∥∥∥∥∥∥
(

N∑
i=1

∣∣∣∣ ∂∂ti
∣∣∣∣
)j

(EZ1)

∥∥∥∥∥∥
p,Γ

+

(37)
(T ∗)K NK

K!nK(1−α)
· max
α̃:|α̃|=K

ω1

(
(EZ1)α̃ ,

T ∗

n1−α

)
2

N
p

N∏
i=1

γ
1
p

i ,

attained by constants. Here, from (37), we get again the Lp convergence of Mn (EZ1)

to (EZ1) with rates.

Proof. From Corollary 5.4.

Next we give the next result.

Proposition 6.5. Let t = (t1, t2, . . . , tN) ∈ RN . Then, under the terms of Definition

3.1, we find that for i = 1, 2, 3

(38) |(Ln (EZi)) (t)− (EZi) (t)| ≤ ω1

(
(EZi) ,

T ∗

n1−α

)
.

Inequality (38) is attained by constant functions.

Proof. From Theorem 5.5.
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We also give

Proposition 6.6. Let K,N ∈ N, with N ≥ 1, t = (t1, t2, . . . , tN) ∈ RN . Then

(39) |(Ln (EZ1)) (t)− (EZ1) (t)| ≤
K∑
j=1

(T ∗)j

j!nj(1−α)

( N∑
i=1

∣∣∣∣ ∂∂ti
∣∣∣∣
)j

(EZ1) (t)

+

(T ∗)K NK

K!nK(1−α)
· max
α̃:|α̃|=K

ω1

(
(EZ1)α̃ ,

T ∗

n1−α

)
.

Inequality (39) is attained by constant functions. Also, (39) gives us with rates the

pointwise convergence of Ln (EZ1) → (EZ1) over RN , as n → +∞.

Proof. From Theorem 5.6.

Proposition 6.7. Let N ∈ N with N ≥ 1, t = (t1, t2, . . . , tN) ∈ RN , Then for

ℓ = 1, 2, 3

(40) |(Mn (EZℓ)) (t)− (EZℓ) (t)| ≤{
T ∗

n(1−α)

(
N∑
i=1

∣∣∣∣ ∂∂ti (EZℓ) (t)

∣∣∣∣
)}

+

T ∗N

n(1−α)
· max
α̃:|α̃|=1

ω1

(
(EZℓ)α̃ ,

T ∗

n1−α

)
.

Inequality (40) is attained by constant functions. Also, (40) gives us with rates the

pointwise convergence of Mn (EZℓ) → (EZℓ) over RN , as n → +∞.

Proof. From Proposition 6.2.

Corollary 6.8. Same assumptions as in Corollary 6.3. Then for ℓ = 1, 2, 3

∥Mn (EZℓ)− (EZℓ)∥p,Γ ≤

 T ∗

n(1−α)

∥∥∥∥∥
N∑
i=1

∣∣∣∣ ∂∂ti (EZℓ)

∣∣∣∣
∥∥∥∥∥
p,Γ

+

(41)
T ∗N

n(1−α)
· max
α̃:|α̃|=1

ω1

(
(EZℓ)α̃ ,

T ∗

n1−α

)
2

N
p

N∏
i=1

γ
1
p

i ,

attained by constants. Here, from (41), we get again the Lp convergence of Mn (EZℓ)

to (EZℓ) with rates.

Proof. From Corollary 6.4.
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Proposition 6.9. Let N ∈ N, with N ≥ 1, t = (t1, t2, . . . , tN) ∈ RN . Then for

ℓ = 1, 2, 3

(42) |(Ln (EZℓ)) (t)− (EZℓ) (t)| ≤{
T ∗

n(1−α)

(
N∑
i=1

∣∣∣∣ ∂∂ti (EZℓ) (t)

∣∣∣∣
)}

+

T ∗N

n(1−α)
· max
α̃:|α̃|=1

ω1

(
(EZℓ)α̃ ,

T ∗

n1−α

)
.

Inequality (42) is attained by constant functions. Also, (42) gives us with rates the

pointwise convergence of Ln (EZℓ) → (EZℓ) over RN , as n → +∞.

Proof. From Proposition 6.6.
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