
Dynamic Systems and Applications 34 (2025) 1-22

STABILITY AND BOUNDEDNESS THEOREMS OF SOLUTIONS
OF CERTAIN SYSTEMS OF DIFFERENTIAL EQUATIONS

A. A. ADEYANJU1, M. O. OMEIKE2, J. O. ADENIRAN3, AND B. S. BADMUS4

1,2,3Department of Mathematics, Federal University of Agriculture Abeokuta,

Nigeria
4Department of Physics, Federal University of Agriculture Abeokuta, Nigeria

1adeyanjuaa@funaab.edu.ng
2omeikemo@funaab.edu.ng
3adeniranoj@funaab.edu.ng
4badmusbs@funaab.edu.ng

ABSTRACT. In this paper, we discuss certain conditions for uniform asymptotic stability and

uniform ultimate boundedness of solutions to two systems of Aizermann-type of differential equations

by means of second method of Lyapunov. In achieving our goal, some Lyapunov functions are

constructed to serve as basic tools. The stability results in this paper, extend some stability results for

some Aizermann-type of differential equations found in literature. Also, we prove some new results

on uniform boundedness and uniform ultimate boundedness of solutions of systems of equations

studied. Finally, we construct two numerical examples to show how valid our results are.
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1. Introduction

The systems of interest in this paper are the following

(1.1) Ẋ = F (X) +BY + P1(t,X, Y ), Ẏ = CX +G(Y ) + P2(t,X, Y ),

and

(1.2) Ẋ = AX + F (Y ) + P1(t,X, Y ), Ẏ = CX +G(Y ) + P2(t,X, Y ),

where t ∈ R+ = [0,∞); A, B and C are real n × n constant symmetric matri-

ces, F, G : Rn → Rn are C1 functions satisfying F (0) = 0 = G(0) and P1, P2 :

R+ ×Rn ×Rn → Rn. Systems (1.1) and (1.2) are n-dimmensionl analogue of some

Aizermann differential equations considered in [7], [11] and [13] when P1 = 0 and

P2 = 0.
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The stability in the large of the systems

(1.3) ẋ = ax+ f1(y), ẏ = f2(x) + cy

ẋ = f1(x) + ay, ẏ = bx+ f2(y)

where a, b, c are some positive constants, was first studied by Krasovskii[11] using the

direct method of Lyapunov. Later Mufti [13] used geometrical approach to study sys-

tem (1.3) and some others related systems, for asymptotic stability in the large of the

zero solution. Mufti [14] also examined the stability property of another Aizermann

equation of the form

(1.4) ẋ = ay + xf(y), ẏ = bx+ yg(x),

where a and b are some positive constants. Stability property of the zero solution

of the corresponding n-dimensional analogue of equation (1.4) was later considered

by Ezeilo [7]. Adeyanju et al.( [2], [3], [4] ) also established some sets of conditions

that ensured the stability of the zero solution and boundedness of all solutions to the

Aizermann systems of differential equations

Ẋ = F (X) +BY + P1(t,X, Y ), Ẏ = G(X) +DY + P2(t,X, Y ),

and

Ẋ = F (X) +H(Y ) + P1(t,X, Y ), Ẏ = CX +DY + P2(t,X, Y ),

where t ∈ R+ = [0,∞), X, Y ∈ Rn; B, C and D are real n×n constant symmetric

matrices, F,G,H : Rn → Rn are one time continuously differentiable functions(C1)

satisfying F (0) = G(0) = H(0) = 0 and P1, P2 : R+ ×Rn ×Rn → Rn.

It is worthy of mentioning here that, the results contained in this work are among few

attempts in extending some known Aizermann scalar differential equations to their

corresponding n-dimensional analogue after those in ([2], [3], [7]) as far as we know

of literature available to us.

Thus, our motivation for this paper comes from the papers of Krasovskii [11], Mufti

[13] and Ezeilo [7]. In [7] the stability of system similar to systems (1.1) and (1.2)

was considered using second method of Lyapunov. Our goal is to also use this sec-

ond method of Lyapunov to study stability, boundedness and ultimate boundedness

of solutions of systems (1.1) and (1.2) which until now, remained open problems in

literature(see, Ezeilo [7]).
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2. Definitions and Preliminary Results

Below are some definitions and standard algebraic results needed to establish the

proofs to our main results.

Definition 2.1 ([20]). The zero solution of equation (1.1) or (1.2) is stable, if given

ϵ > 0 and t0 ∈ I, there exists a δ(t0, ϵ) > 0, such that whenever, ∥X0∥ < δ(t0, ϵ),

∥X(t; t0, X0)∥ < ϵ for all t ≥ t0.

Definition 2.2 ([20]). The zero solution of equation (1.1) or (1.2) is uniformly stable,

if it is stable and the δ in the definition of stability above is independent of t0.

Definition 2.3 ([20]). The zero solution of equation (1.1) or (1.2) is asymptotically

stable, if it is stable and in addition, there exists an α ∈ [t1, t2], t0 ≤ t1 ≤ t2 ≤ t such

that if ∥X0∥ < δ(t0, α), we have

∥X(t; t0, X0)∥ → 0 as t→ ∞.

Definition 2.4 ([20]). The zero solution of equation (1.1) or (1.2) is uniformly asymp-

totically stable, if it is uniformly stable and if there is a δ > 0 and T (ϵ), such that

whenever ∥X0∥ < δ, we have

∥X(t; t0, X0)∥ < ϵ for all t ≥ t0 + T (ϵ).

Definition 2.5 ([20]). The solution of equation (1.1) or (1.2) is bounded if there

exists a β > 0, such that ∥X(t; t0, X0)∥ < β for all t ≥ t0, where β may depend on

each solution.

Definition 2.6 ([20]). The solution of equation (1.1) or (1.2) is uniformly bounded

if, for any α > 0 and t0 ∈ I, there exists a β(α) > 0 such that if X0 ∈ Sα, then

∥X(t; t0, X0)∥ < β(α) for all t ≥ t0, where α is the length of interval.

Definition 2.7 ([20]). The solution of equation (1.1) or (1.2) is ultimately-bounded

for bound M, if there exits an M > 0 and for every solution X(t, t0, X0) of (1.5.1),

there exists a T = T (α,X), such that

∥X(t; t0, X0)∥ < M

for all t ≥ t0 + T.

Definition 2.8 ([20]). The solution of equation (1.1) or (1.2) is uniformly ultimately

bounded for bound M, if there exists an M > 0 and if for any α > 0 and t0 ∈ I there

exists a T (α) > 0 such that X0 ∈ Sα implies that

∥X(t; t0, X0)∥ < M

for all t ≥ t0 + T (α).
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Lemma 2.9. ( [1], [6], [10], [15], [17])

Let A be a real n× n-constant symmetric matrix and

δa ≤ λi(A) ≤ ∆a, (i = 1, 2, ..., n),

where δa and ∆a are positive constants representing the least and greatest eigenvalues

of matrix A respectively.

Then,

δa⟨X,X⟩ ≤ ⟨AX,X⟩ ≤ ∆a⟨X,X⟩.

Lemma 2.10. ([7])

Let H : Rn → Rn be of class C1 and suppose that H(0) = 0.

(i) Then for any X ∈ Rn,

H(X) =

∫ 1

0

Jh(sX)Xds,

where Jh(X) is the Jacobian matrix of H(X);

(ii) Let Jh(X) be symmetric and commutes with a certain real n × n symmetric

matrix E. Then

d

dt

∫ 1

0

⟨EH(sX), X⟩ds = ⟨EH(X), Ẋ⟩,

for any real differentiable vector X = X(t) ∈ Rn.

Lemma 2.11. ([5], [8], [9])

Let A, B be any two real n × n symmetric positive definite matrices. Then, for

(i, j, k = 1, 2, . . . , n),

(i) the eigenvalues λi(AB) of the product matrix AB are real and satisfy

min
1≤j,k≤n

λj(A)λk(B) ≤ λi(AB) ≤ max
1≤j,k≤n

λj(A)λk(B);

(ii) the eigenvalues λi(A+B) of the sum of matrices A and B are real and satisfy

{ min
1≤j≤n

λj(A) + min
1≤k≤n

λk(B)} ≤ λi(A+B) ≤ {max
1≤j≤n

λj(A) + max
1≤k≤n

λk(B)}.

Lemma 2.12. (LaSalle’s invariance principle) [18]

If V is a Lyapunov function on a set G and xt(ϕ) is a bounded solution such that

xt(ϕ) ∈ G for t ≥ 0, then ω(ϕ) ̸= 0 is contained in the largest invariant subset of

E ≡ {ψ ∈ G∗ : V (ψ̇) = 0}, where G∗ is the closure of set G and ω denote the omega

limit set of a solution.
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3. Formulation of Main Results for system (1.1)

In this section, we state and provide the proofs of our main results regarding the

system (1.1).

Theorem 3.1. Let Jf (X) and Jg(Y ) denote the Jacobian matrices ∂fi
∂xj
, ∂gi

∂yj
of F (X)

and G(Y ) respectively. Suppose further that:

(i) the matrices B, Jf (X), Jg(Y ) are all symmetric and negative definite, while, C is

symmetric and positive definite such that for some positive constants δ1, δ2, δ3, δ4,∆1,∆2,∆3

and ∆4, we have

δ1 ≤ λi(C) ≤ ∆1,

δ2 ≤ λi(−B) ≤ ∆2,

−∆3 ≤ λi(CJf (X)) ≤ −δ3,

δ4 ≤ λi(BJg(Y )) ≤ ∆4,

(i, j = 1, 2, . . . , n),

(ii) matrix C commutes with matrix Jf (X) while matrix B commutes with matrix

Jg(Y ),

(iii) P1(t,X, Y ) = 0 and P2(t,X, Y ) = 0.

Then, the trivial solution of system (1.1) is asymptotically stable.

Theorem 3.2. Suppose that assumptions in (iii) of Theorem (3.1) are replaced by

(iii) ∥P1(t,X, Y )∥ ≤ ϕ(t), ∥P2(t,X, Y )∥ ≤ θ(t), for all t ≥ 0, X, Y ∈ Rn, maxϕ(t) <

∞, max θ(t) < ∞ and ϕ(t), θ(t) ∈ L1(0,∞), where L1(0,∞) is the space of

integrable Lebesgue functions.

Then, solutions of system (1.1) are bounded.

Theorem 3.3. Further to the assumptions (i)-(ii) of Theorem (3.1), let

(iii) ∥P1(t,X, Y )∥ ≤ ϕ1(t){1 + ∥X∥}, ∥P2(t,X, Y )∥ ≤ θ1(t){1 + ∥Y ∥}, for all t ≥
0, X, Y ∈ Rn, maxϕ1(t) < ∞, max θ1(t) < ∞ and ϕ1(t), θ1(t) ∈ L1(0,∞),

where L1(0,∞) is the space of integrable Lebesgue functions.

Then, any solution (X(t), Y (t)) of system (1.1) with the initial condition

X(0) = X0, Y (0) = Y0

satisfies

∥X(t)∥ ≤ K11, ∥Y (t)∥ ≤ K11

for all t ≥ 0, X, Y ∈ Rn, where K11 > 0 is a constant depending on B, C, θ1(t), ϕ1(t), X0, Y0,

and on the functions P1(t,X, Y ), and P2(t,X, Y ).

Theorem 3.4. Under the assumptions of Theorem (3.2) or Theorem (3.3), all the

solutions of system (1.1) are uniform-ultimately bounded.
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4. Proof of Main Results on system (1.1)

We shall make use of the continuously differentiable scalar function V = V (X, Y )

defined below to establish the proofs of our main results.

(4.1) 2V (X, Y ) = ⟨X,CX⟩ − ⟨BY, Y ⟩,

where matrices B,C are as defined in Theorem (3.1). The following Lemmas are

essential to prove our main results.

Lemma 4.1.

Suppose, under the assumptions of Theorem (3.1) there exist some constants K1 and

K2 both positive such that the function V defined by equation (4.1), satisfies

(4.2) K1{∥X(t)∥2 + ∥Y (t)∥2} ≤ 2V (X, Y ) ≤ K2{∥X∥2 + ∥Y ∥2}

and

V (X(t), Y (t)) → +∞ as ∥X∥2 + ∥Y ∥2 → ∞.

Furthermore, there exists a positive constant K3 such that for any solution (X(t), Y (t))

of (1.1) we have

V̇ ≤ −K3{∥X(t)∥2 + ∥Y (t)∥2},

for all t ≥ 0, X, Y ∈ Rn.

Proof. It is obvious from equation (4.1) that V (X, Y ) = 0 when X(t) = Y (t) = 0. By

applying assumptions in (i) of Theorem (3.1) and Lemma (2.9) to the terms contained

in (4.1) , we can always find some positive constants δ1 and δ2 such that

⟨CX,X⟩ ≥ δ1∥X∥2

and

−⟨BY, Y ⟩ ≥ δ2∥Y ∥2.

Thus,

2V ≥ δ1∥X∥2 + δ2∥Y ∥2.

If we take K1 = min{δ1, δ2}, then, we obtain,

(4.3) 2V ≥ K1{∥X∥2 + ∥Y ∥2}.

for all t ≥ 0, X, Y ∈ Rn. Thus, it follows from (4.3) that V (X, Y ) = 0 if and only

if ∥X∥2 + ∥Y ∥2 = 0 and V (X, Y ) > 0 if and only if ∥X∥2 + ∥Y ∥2 ̸= 0, which now

implies that

V (X, Y ) → ∞ as ∥X∥2 + ∥Y ∥2 → ∞.

We also proceed to get the upper bound for the function V (X, Y ). From the assump-

tions listed in (i) of Theorem (3.1) and Lemma (2.9), we have

2V ≤ ∆1⟨X,X⟩+∆2⟨Y, Y ⟩.
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On setting

K2 = max{∆1,∆2},

we obtain

(4.4) 2V ≤ K2{∥X∥2 + ∥Y ∥2}.

Thus, inequality (4.2) follows immediately on combining inequalities (4.3) and (4.4).

In what follows, we obtain the derivative of V with respect to t along the solution

path of (1.1) such that it satisfies

V̇ |(1.1) ≡
d

dt
V (X, Y )|(1.1) ≤ −K4

provided that ∥X∥2 + ∥Y ∥2 ≤ K5, both K4 and K5 are some positive constants. The

derivative of V along (1.1) is

V̇ |(1.1) = ⟨CX,F (X)⟩ − ⟨BY,G(Y )⟩

=

∫ 1

0

⟨CX, Jf (s1X)X⟩ds1 −
∫ 1

0

⟨BY, Jg(s1Y )Y ⟩ds2.

In view of the assumptions listed (i) of Theorem (3.1) and Lemma (2.9), there exist

some positive constants δ3 and δ4 such that:

⟨CX, Jf (s1X)X⟩ ≤ −δ3∥X∥2

and

−⟨BY, Jg(s1Y )Y ⟩ ≤ −δ4∥Y ∥2.

Therefore,

V̇ |(1.1) ≤ −{δ3∥X∥2 + δ4∥Y ∥2}
∫ 1

0

ds1,

≤ −{δ3∥X∥2 + δ4∥Y ∥2}.

Let K3 = min{δ3, δ4}, then we get,

V̇ |(1.1) ≤−K3{∥X∥2 + ∥Y ∥2}(4.5)

≤−K4

for all t ≥ 0, X, Y ∈ Rn, where K4 > 0 is constant. This completes the proof of

Lemma (4.1).

Lemma 4.2. Suppose under the assumptions of Theorem (3.2) there exists some

positive constants K3 and K6 such that for any solution (X, Y ) of the system (1.1),

the function V defined by equation (4.1), satisfies

V̇ |(1.1) ≤ −K3{∥X∥2+∥Y ∥2}+∆c(1+∥X∥2)∥P1(t,X, Y )∥+∆2(1+∥Y ∥2)∥P2(t,X, Y )∥,

for all t ≥ 0, X, Y ∈ Rn.
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Proof. If we follow the same pattern used in the proof of Lemma (4.1), but in this

case, P1(t,X, Y ) ̸= 0, and P2(t,X, Y ) ̸= 0, we obtain

V̇ |(1.1) ≤ −K3{∥ X ∥2 + ∥ Y ∥2}+ ⟨CX,P1(t,X, Y )⟩ − ⟨BY, P2(t,X, Y )⟩

≤ −K3{∥ X ∥2 + ∥ Y ∥2}+∆c∥X∥∥P1(t,X, Y )∥+∆2∥Y ∥∥P2(t,X, Y )∥.(4.6)

By applying the following identities

∥X∥ ≤ 1 + ∥X∥2 and ∥Y ∥ ≤ 1 + ∥Y ∥2

in (4.6), we obtain

V̇ |(1.1) ≤ −K3{∥ X ∥2 + ∥ Y ∥2}+∆c{1+∥X∥2}∥P1(t,X, Y )∥+∆2{1+∥Y ∥2}∥P2(t,X, Y )∥,

for all t ≥ 0, X, Y ∈ Rn.

This completes the proof of Lemma (4.2).

Proof Theorem (3.1)

It is clear from inequalities (4.3) and (4.5) of the proof of Lemma (4.1) that the triv-

ial/zero solution of the system (1.1) is stable.

Consider the set W define by

W = {(X, Y ) : V̇ |(1.1)(X, Y ) = 0}.

By using LaSalle’s invariance principle, we observe that (X, Y ) ∈ W implies that

X = Y = 0. Hence, this shows that the largest invariant set contained in W is

(0, 0) ∈ W. Therefore, we conclude that the zero solution of the system (1.1) is

asymptotically stable and this completes the proof of Theorem (3.1).

Corollary 4.3. As a corollary to Theorem (3.1), in view of inequalities (4.3), (4.4)

and (4.5) of Lemma (4.1),

(i) the trivial solution of the system (1.1) is uniformly stable.

(ii) and the conclusion of the proof of Theorem (3.1) based on LaSalle’s invariance

principle, the trivial solution is uniformly asymptotically stable.

Proof of Theorem (3.2)

From the conclusion of Lemma (4.2), we have

V̇ |(1.1) ≤ −K3{∥ X ∥2 + ∥ Y ∥2}+∆c{1 + ∥X∥2}∥P1(t,X, Y )∥+∆2{1 + ∥Y ∥2}∥P2(t,X, Y )∥

≤ ∆2θ(t) + ∆cϕ(t) + ∆cϕ(t)∥X∥2 +∆2θ(t)∥Y ∥2.
(4.7)

From inequality (4.3), we have that

∥Y ∥2 ≤ ∥Y ∥2 + ∥X∥2 ≤ 2K−1
1 V and ∥X∥2 ≤ ∥Y ∥2 + ∥X∥2 ≤ 2K−1

1 V.
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On putting these into (4.7), we obtain

(4.8) V̇ |(1.1) ≤ ∆2θ(t) + ∆cϕ(t) + 2K−1
1 {∆2θ(t) + ∆cϕ(t)}V.

Letting θ6(t) = ∆2θ(t) + ∆cϕ(t) in (4.8) and integrate between 0 to t, (t > 0), gives

V (t) ≤ V (0) + ∆2

∫ t

0

θ6(s)ds+ 2∆2K
−1
1

∫ t

0

θ6(s)V (s)ds.

Setting

W1 = V (0) + ∆2

∫ ∞

0

θ6(s)ds and W2 = 2∆2K
−1
1 ,

then,

V (t) ≤ W1 +W2

∫ ∞

0

V (s)θ6(s)ds.

On applying Gronwall-Bellman inequality [16], we have

(4.9) V (t) ≤ W1 exp(W2

∫ ∞

0

θ6(s)ds) ≤ K8,

where K8 is a positive constant.

Thus, using estimate (4.3) in (4.9), one can easily conclude that all solutions of

system (1.1) are bounded and this completes the proof of Theorem (3.2).

Corollary 4.4. Under the assumptions of Theorem (3.2) all solutions of system (1.1)

are uniformly bounded.

Proof of Theorem (3.3)

The proof of this theorem is as follows. From the proof of Theorem (3.2), we know

that

V̇ |(1.1) ≤ −K3{∥ X ∥2 + ∥ Y ∥2}+∆2∥Y ∥∥P2(t,X, Y )∥+∆c∥X∥∥P1(t,X, Y )∥.

Using the assumption (iii) of Theorem (3.3), we obtain

V̇ |(1.1) ≤ ∆2θ1(t)∥Y ∥{1 + ∥Y ∥}+∆cϕ1(t)∥X∥{1 + ∥X∥}

≤ ∆2θ1(t){∥Y ∥+ ∥Y ∥2}+∆cϕ1(t){∥X∥+ ∥X∥2}.

Applying these two identities

∥Y ∥ ≤ 1 + ∥Y ∥2 and ∥X∥ ≤ 1 + ∥X∥2,

we have

(4.10) V̇ |(1.1) ≤ ∆2θ1(t) + ∆cϕ1(t) + 2∆2θ1(t)∥Y ∥2 + 2∆cϕ1(t)∥X∥2,

for all t ≥ 0, X, Y ∈ Rn. Now, from the inequality (4.3), we have

∥Y ∥2 ≤ ∥X∥2 + ∥Y ∥2 ≤ 2K−1
1 V (t,X, Y )
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and

∥X∥2 ≤ ∥X∥2 + ∥Y ∥2 ≤ 2K−1
1 V (t,X, Y ).

On applying these facts in (4.10), we get

V̇ |(1.1) ≤ ∆2θ1(t) + ∆cϕ1(t) + 4K−1
1 {∆2θ1(t) + ∆cϕ1(t)}V (X, Y )

(4.11) V̇ |(1.1) ≤ θ6(t) + 4K−1
1 θ6(t)V (X, Y ),

where θ6 = ∆2θ1(t) +∆cϕ1(t). The integration of both sides of (4.11) between 0 to t,

(t > 0), gives

V (t) ≤ V (X(0), Y (0)) +

∫ t

0

θ6(s)ds+ 4K−1
1

∫ t

0

θ6(s)V (s)ds.

Letting

W3 = V (X(0), Y (0)) +

∫ ∞

0

θ6(s)ds and W4 = 4K−1
1 ,

then,

V (t) ≤ W3 +W4

∫ ∞

0

V (s)θ6(s)ds.

By applying Gronwall-Bellman inequality [16], we have

(4.12) V (t) ≤ W3 exp(W4

∫ ∞

0

θ6(s)ds) ≤ K9

where K9 > 0 is a constant. On using (4.3) in the inequality (4.12), we obtain

∥X∥2 + ∥Y ∥2 ≤ 2K9K
−1
1 = K10

and this implies

∥X∥2 ≤ K10 and ∥Y ∥2 ≤ K10.

This completes the proof of Theorem (3.3).

Proof of Theorem (3.4).

From Lemma (4.2) we have that the derivative V̇ |(1.1) of the function V defined in

(4.1), satisfied

V̇ |(1.1) ≤ −K3{∥ X ∥2 + ∥ Y ∥2}+∆2∥Y ∥∥P2(t,X, Y )∥+∆c∥X∥∥P1(t,X, Y )∥.

From the assumption (iii) of Theorem (3.3), we obtain

V̇ |(1.1) ≤−K3{∥ X ∥2 + ∥ Y ∥2}+∆cϕ1(t)∥X∥{1 + ∥X∥}+∆2θ1(t)∥Y ∥{1 + ∥Y ∥}

≤ −K3{∥ X ∥2 + ∥ Y ∥2}+∆cϕ1(t){∥X∥+ ∥X∥2}+∆2θ1(t){∥Y ∥+ ∥Y ∥2}.

Now, suppose K11 = max{∆c,∆2} and 0 ≤ α1 = max{θ1(t), ϕ1(t)}. Then, we obtain

V̇ |(1.1) ≤ −K3{∥ X ∥2 + ∥ Y ∥2}+ α1K11{∥X∥+ ∥Y ∥}+K11α1{∥X∥2 + ∥Y ∥2}.

On using the fact that

{∥X∥+ ∥Y ∥} ≤ 2
1
2{∥X∥2 + ∥Y ∥2}

1
2 ,
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we have

V̇ |(1.1) ≤ −{K3 −K11α1}{∥X∥2 + ∥Y ∥2}+ 2
1
2K11α1{∥X∥2 + ∥Y ∥2}

1
2 .

By letting α2 =
1
2
(K3 −K11α1) > 0, α1 < K3K

−1
11 and α3 = 2

1
2α1K11, we have

(4.13) V̇ |(1.1) ≤ −2α2{∥X∥2 + ∥Y ∥2}+ α3{∥X∥2 + ∥Y ∥2}
1
2 .

If we choose (∥X∥2 + ∥Y ∥2) 1
2 ≥ α4 = 2α3α

−1
2 , then the inequality (4.13) implies that

(4.14) V̇ |(1.1) ≤ −α2{∥X∥2 + ∥Y ∥2}.

Then, if we choose (∥X∥2 + ∥Y ∥2) 1
2 ≥ max{α− 1

2
2 , α4} in (4.14), we obtain,

V̇ |(1.1) ≤ −1.

The conclusion of the proof of Theorem (3.4) follows exactly the Yoshizawa techniques

employed in [19] or Meng [12]. Following the approach used in [12] or [19], we can

establish that for any solution (X(t), Y (t)) of the system (1.1), we ultimately have

∥X(t)∥2 + ∥Y (t)∥2 ≤ K12,

for some positive constant K12. This means that, for any solution (X(t), Y (t)) of

system (1.1), we cannot have

(4.15) ∥X(t)∥2 + ∥Y (t)∥2 ≥ α2
4,

for all t ≥ 0. But suppose on the contrary that (4.15) was true for all t ≥ 0. Then,

by (4.14), we should have

V̇ |(1.1) ≤ −α2α
2
4 < 0 for all t ≥ 0,

which clearly means that V (X(t), Y (t)) → −∞ as t → ∞. This contradicts the

conclusion of Lemma (4.2) that V is non-negative. Thus, there exists a t1 ≥ 0 such

that

(4.16) ∥X(t1)∥2 + ∥Y (t1)∥2 < α2
4.

In view of the conclusion of Lemma (4.1), there exists a constant α5 > α4 such that

(4.17) max
∥X∥2+∥Y ∥2=α2

4

V (X, Y ) < min
∥X∥2+∥Y ∥2=α2

5

V (X, Y ).

Then, it will be proven that any solution (X(t), Y (t)) of (1.1) satisfying (4.16) must

necessarily satisfy

(4.18) ∥X∥2 + ∥Y ∥2 < α2
5, for t ≥ t1,

thereby validating our claim.
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Let’s assume that (4.18) is not true. Then in view of (4.16) there exist t2 and t3,

t1 < t2 < t3, such that

(4.19) ∥X(t2)∥2 + ∥Y (t2)∥2 = α2
4

(4.20) ∥X(t3)∥2 + ∥Y (t3)∥2 = α2
5

and such that

(4.21) α2
4 ≤ (∥X(t)∥2 + ∥Y (t)∥2) ≤ α2

5

for t2 ≤ t ≤ t3. By (4.14), inequality (4.21) implies that V (t2) > V (t3) and this

contradicts the claim that V (t2) < V (t3) (t2 < t3) which is obtained from (4.17),

(4.19) and (4.20). Hence, any solution (X(t), Y (t)) of (1.1) must satisfy (4.18). This

completes the proof of Theorem (3.4)

5. Formulation of Main Results for system (1.2)

The main results for system (1.2) are given below.

Theorem 5.1. Let Jf (Y ), Jg(Y ) denote the Jacobian matrices ∂fi
∂yj
, ∂gi

∂yj
of F (Y )

and G(Y ) respectively, (i, j = 1, 2, ..., n). Suppose further that:

(i) the matrices A, Jf (Y ), Jg(Y ) are all symmetric and negative definite, while, C is

symmetric and positive definite such that for some positive constants δc, δf , δ5, δ6,∆c,∆f ,∆5

and ∆6, we have

δc ≤ λi(C) ≤ ∆c,

δf ≤ λi(−Jf (Y )) ≤ ∆f ,

−∆5 ≤ λi(AC) ≤ −δ5,

−∆6 ≤ λi(−Jf (Y )Jg(Y )) ≤ −δ6,

(i = 1, 2, . . . , n).

(ii) the matrix A commutes with matrix C, while matrix Jf (Y ) commutes with matrix

Jg(Y ),

(iii) P1(t,X, Y ) = 0 and P2(t,X, Y ) = 0.

Then, the trivial solution of system (1.2) is asymptotically stable.

Theorem 5.2. Let the assumption (iii) of Theorem (5.1) be replaced by

(iii) ∥P1(t,X, Y )∥ ≤ ϕ2(t), ∥P2(t,X, Y )∥ ≤ θ2(t) for all t ≥ 0, maxϕ2(t) <∞, max θ2(t) <

∞ and ϕ2(t), θ2(t) ∈ L1(0,∞), where L1(0,∞) is the space of integrable Lebesgue

functions.

Then, solutions of system (1.2) are bounded.

Theorem 5.3. Further to the assumptions (i), (ii) of Theorem (5.1), let
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(vi) ∥P1(t,X, Y )∥ ≤ ϕ3(t){1 + ∥X∥}, ∥P2(t,X, Y )∥ ≤ θ3(t){1 + ∥Y ∥} for all t ≥ 0,

max θ3(t) < ∞, maxϕ3(t) < ∞ and θ3(t), ϕ3(t) ∈ L1(0,∞), where L1(0,∞) is

the space of integrable Lebesgue functions.

Then, any solution (X(t), Y (t)) of system (1.2) with the initial condition

X(0) = X0, Y (0) = Y0

satisfies

∥X(t)∥ ≤ D, ∥Y (t)∥ ≤ D

for all t ≥ 0 where D > 0 depends on A, C, ϕ3(t), θ3(t), t0, X0, Y0, and on the

functions P1(t,X, Y ) and P2(t,X, Y ).

Theorem 5.4. Under the assumptions of Theorem (5.2) or Theorem (5.3), all the

solutions of system (1.2) are uniform-ultimately bounded.

6. Proof of Main Results on system (1.2)

The main tool in the proofs of our theorems is the Lypunov function V = V (X, Y )

defined by

(6.1) 2V (X, Y ) = ⟨X,CX⟩ − 2

∫ 1

0

⟨F (sY ), Y ⟩ds,

where C is as defined in Theorem (5.1).

Lemma 6.1. Suppose, under the assumptions of Theorem (5.1) there exist constants

D1 and D2 both positive such that the function V defined by equation (6.1), satisfies

D1{∥X∥2 + ∥Y ∥2} ≤ 2V (X, Y ) ≤ D2{∥X∥2 + ∥Y ∥2}

and

V (X, Y ) → +∞ as ∥X∥2 + ∥Y ∥2 → ∞.

Furthermore, there exists a positive constant D3 such that for any solution (X, Y ) of

(1.2), we have

V̇ ≤ −D3{∥X∥2 + ∥Y ∥2},

for all t ≥ 0, X(t), Y (t)) ∈ Rn.

Proof. Clearly, for X(t) = Y (t) = 0, t ≥ 0, V (X, Y ) = 0. Using Lemma (2.10) in

(6.1), we have

2V (t,X, Y ) = ⟨X,CX⟩ − 2

∫ 1

0

⟨F (sY ), Y ⟩ds

= ⟨X,CX⟩ − 2

∫ 1

0

∫ 1

0

⟨Jf (s1s2Y )Y, Y ⟩s1ds1ds2.
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On applying assumptions of Theorem (5.1) and Lemma (2.9), we have

⟨−Jf (s1s2Y )Y, Y ⟩ ≥ δf∥Y ∥2

and

⟨X,CX⟩ ≥ δc∥X∥2.

Thus, ∫ 1

0

∫ 1

0

⟨−Jf (s1s2Y )Y, Y ⟩s1ds1ds2 ≥ δf∥Y ∥2
∫ 1

0

∫ 1

0

s1ds1ds2

=
1

2
δf∥Y ∥2

and hence,

2V (X, Y ) ≥ δc∥X∥2 + δf∥Y ∥2.

Thus, for some constant D1 = min{δf , δc}, we obtain

(6.2) 2V (X, Y ) ≥ D1(∥X∥2 + ∥Y ∥2)

for all t ≥ 0, X, Y ∈ Rn. It then follows from (6.2) that V (X, Y ) = 0 if and only

if ∥X∥2 + ∥Y ∥2 = 0 and V (X, Y ) > 0 if and only if ∥X∥2 + ∥Y ∥2 ̸= 0, which now

implies that

V (X, Y ) → ∞ as ∥X∥2 + ∥Y ∥2 → ∞.

Similarly, by the assumptions of Theorem (5.1) and Lemma (2.9), we have

⟨−Jf (s1s2Y )Y, Y ⟩ ≤ ∆f∥Y ∥2

and

⟨X,CX⟩ ≤ ∆c∥X∥2.

Therefore, ∫ 1

0

∫ 1

0

⟨−Jf (s1s2Y )Y, Y ⟩s1ds1ds2 ≤ ∆f∥Y ∥2
∫ 1

0

∫ 1

0

s1ds1ds2,

=
1

2
∆f∥Y ∥2.

Hence,

2V (X, Y ) ≤ ∆f∥Y ∥2 +∆c∥X∥2.

Thus, for some constant D2 = max{∆f ,∆c}, we have

2V (X, Y ) ≤ D2(∥X∥2 + ∥Y ∥2)

for all t ≥ 0, X, Y. Therefore,

D1{∥X∥2 + ∥Y ∥2} ≤ 2V (t) ≤ D2{∥X∥2 + ∥Y ∥2}.
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We now proceed to obtain the derivative of V with respect to t along the solution

path of the system (1.2) such that it satisfies

V̇ |(1.2) ≡
d

dt
V (X, Y )|(1.2) ≤ −D3

provided that ∥X∥2+∥Y ∥2 ≤ D4, both D3 and D4 are some positive constants. From

the Lyapunov function defined in (6.1), we obtain the derivative V̇ |(1.2) as

V̇ |(1.2) = ⟨AX,CX⟩ − ⟨F (Y ), G(Y )⟩

= ⟨AX,CX⟩ −
∫ 1

0

∫ 1

0

⟨Jf (s1Y ), Jg(s2Y )Y ⟩ds1ds2.

From the assumptions of Theorem (5.1) and Lemmas (2.9) - (2.11), we have

V̇ |(1.2) ≤ −δ5∥X∥2 − δ6∥Y ∥2.

Thus, there exists a constant D3 = min{δ5, δ6} > 0 such that

V̇ |(1.2) ≤ −D3{∥X∥2 + ∥Y ∥2}

for all t ≥ 0, X, Y ∈ Rn. This completes the proof of Lemma (6.1).

Proof of Theorem (5.1).

From the proof of Lemma (6.1), it is established that the trivial/zero solution of the

system (1.2) is stable. Finally, we apply LaSalle’s invariance principle to conclude

the proof of the theorem as follows.

Consider the set W defined by

W = {(X, Y ) : V̇ (X, Y ) = 0}.

By using LaSalle’s invariance principle, we observe that (X, Y ) ∈ W implies that

X = Y = 0. Hence, this shows that the largest invariant set contained in W is

(0, 0) ∈ W. Therefore, we conclude that the zero solution of the system (1.2) is

asymptotically stable and this completes the proof of Theorem (5.1).

Corollary 6.2. As a corollary to Theorem (5.1),

(i) the trivial solution of system (1.2) is uniformly stable;

(ii) the trivial solution is uniformly asymptotically stable.

Proof of Theorem (5.2)

We have from the proof of Lemma (6.1), but now Pi(t,X, Y ) ̸= 0, (i = 1, 2) that

V̇ |(1.2) ≤ −D3{∥X∥2 + ∥Y ∥2}+ ⟨CX,P1(t,X, Y )⟩ − ⟨F (Y ), P2(t,X, Y )⟩.
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But

−⟨F (Y ), P (t,X, Y )⟩ ≤|⟨F (Y ), P (t,X, Y )⟩|

≤
∫ 1

0

|⟨Jf (s1Y )Y, P (t,X, Y )⟩|ds1

≤∆f∥Y ∥∥P (t,X, Y )∥

and

⟨CX,P1(t;X, Y )⟩ ≤ |⟨CX,P1(t,X, Y )⟩|

≤ ∆c∥X∥∥P1(t,X, Y )∥.

Therefore,

V̇ |(1.2) ≤ ∆c∥X∥∥P1(t,X, Y )∥+∆f∥Y ∥∥P2(t,X, Y )∥.

Using the inequalities

∥X∥ ≤ 1 + ∥X∥2 and ∥Y ∥ ≤ 1 + ∥Y ∥2

in V̇ |(1.2), we have

V̇ |(1.2) ≤ ∆cϕ2(t){1 + ∥X∥2}+∆fθ2(t){1 + ∥Y ∥2}

≤ ∆cϕ2(t) + ∆fθ2(t) + ∆cϕ2(t)∥X∥2 +∆fθ2(t)∥Y ∥2.

From the inequality (6.2), we have the following facts,

∥X∥2 ≤ ∥X∥2 + ∥Y ∥2 ≤ 2D−1
1 V (X, Y )

and

∥Y ∥2 ≤ ∥X∥2 + ∥Y ∥2 ≤ 2D−1
1 V (X, Y ).

Thus,

V̇ |(1.2) ≤ ∆cϕ2(t) + ∆fθ2(t) + 2D−1
1 {∆cϕ2(t) + ∆fθ2(t)}V (X, Y )

(6.3) V̇ |(1.2) ≤ θ7(t) + 2D−1
1 θ7(t)V (X, Y )

where θ7(t) = ∆cϕ2(t) + ∆fθ2(t).

Integrating both sides of (6.3) between 0 to t, (t > 0), produces

V (t) ≤ V (0) +

∫ t

0

θ7(s)ds+ 2D−1
1

∫ t

0

θ7(s)V (s)ds.

Suppose we let

W5 = V (0) +

∫ ∞

0

θ7(s)ds and W6 = 2D−1
1 ,

then,

V (t) ≤ W5 +W6

∫ ∞

0

V (s)θ7(s)ds.

By applying Gronwall-Bellman inequality [16], we have

V (t) ≤ W5 exp(W6

∫ ∞

0

θ7(s)ds) ≤ D8,
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where D8 > 0 is a constant. From the estimate (6.2) and the assumptions on θ2(t),

we conclude that all solutions of (1.2) are bounded and this completes the proof of

Theorem (5.2).

Corollary 6.3. Under the assumptions of Theorem (5.2) all the solutions of system

(1.2) are uniformly bounded.

Proof of Theorem (5.3)

In proving this theorem, we follow the same pattern as in the proof of Theorem (5.2).

We know from the proof of Theorem (5.2) that

V̇ |(1.2) ≤∆c∥X∥∥P1(t,X, Y )∥+∆f∥Y ∥∥P2(t,X, Y )∥

≤∆cϕ3(t)∥X∥{1 + ∥X∥}+∆fθ3(t)∥Y ∥{1 + ∥Y ∥}

≤∆cϕ3(t){∥X∥+ ∥X∥2}+∆fθ3(t) {∥Y ∥+ ∥Y ∥2}.

Using the inequalities

∥X∥ ≤ 1 + ∥X∥2 and ∥Y ∥ ≤ 1 + ∥Y ∥2

in V̇ |(1.2), we have

V̇ ≤ ∆cϕ3(t) + ∆fθ3(t) + 2∆cϕ3(t)∥X∥2 + 2∆fθ3(t)∥Y ∥2.

From the inequality (6.2), we have the following facts,

∥X∥2 ≤ ∥X∥2 + ∥Y ∥2 ≤ 2D−1
1 V (X, Y )

and

∥Y ∥2 ≤ ∥X∥2 + ∥Y ∥2 ≤ 2D−1
1 V (X, Y ).

Thus,

V̇ ≤ ∆cϕ3(t) + ∆fθ3(t) + 2D−1
1 {∆cϕ3(t) + ∆fθ3(t)}V (X, Y )

(6.4) V̇ |(1.2) ≤ θ7(t) + 2D−1
1 θ7(t)V (X, Y )

where θ7(t) = ∆cϕ3(t) +K20θ3(t).

Integrating both sides of (6.4) between 0 to t, (t > 0), produces

V (t) ≤ V (0) + ∆f

∫ t

0

θ7(s)ds+ 2∆fD
−1
1

∫ t

0

θ7(s)V (s)ds.

Suppose we let

W7 = V (0) + ∆f

∫ ∞

0

θ7(s)ds and W8 = 2∆fD
−1
1 ,

then,

V (t) ≤ W5 +W6

∫ ∞

0

V (s)θ7(s)ds.
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By applying Gronwall-Bellman inequality [16], we have

(6.5) V (t) ≤ W5 exp(W6

∫ ∞

0

θ7(s)ds) ≤ D9.

where D9 is a positive constant. On using (6.2) in the inequality (6.5), we obtain

∥X∥2 + ∥Y ∥2 ≤ 2D9D
−1
1 = D10

and this implies

∥X∥2 ≤ D10 and ∥Y ∥2 ≤ D10.

The proof of Theorem (5.3) is now complete.

Before we provide the proof of Theorem (5.4), the following lemma is essential.

Lemma 6.4. Suppose that, under the assumptions of Theorem (5.3) there exists

a positive constant, D11 such that for any solution (X, Y ) of the system (1.2), the

function V defined by equation (6.1), satisfies

V̇ |(1.2) ≤−D4{∥X(t)∥2 + ∥Y (t)∥2}+∆c(1 + ∥X∥2)∥P1(t,X, Y )∥

+D11(1 + ∥Y ∥2)∥P2(t,X, Y )∥

for all t ≥ 0, X(t), Y (t) ∈ Rn.

Proof. If we follow the same argument as in the proof of Lemma (6.1), but in this

case, Pi(t,X, Y ) ̸= 0, (i = 1, 2), we obtain

V̇ |(1.2) ≤−D4{∥X∥2 + ∥Y ∥2}+ ⟨CX,P1(t,X, Y )⟩ − ⟨F (Y ), P2(t,X, Y )⟩

≤ −D4{∥ X ∥2 + ∥ Y ∥2}+∆c∥X∥∥P1(t,X, Y )∥+∆f∥Y ∥∥P2(t,X, Y )∥.

By applying the inequalities

∥Y ∥ ≤ 1 + ∥Y ∥2 and ∥X∥ ≤ 1 + ∥X∥2

in the above, we obtain

V̇ |(1.2) ≤−D4{∥ X ∥2 + ∥ Y ∥2}+∆c{1 + ∥X∥2}∥P1(t,X, Y )∥

+∆f{1 + ∥Y ∥2}∥P2(t,X, Y )∥

=−D4{∥ X ∥2 + ∥ Y ∥2}+∆c{1 + ∥X∥2}∥P1(t,X, Y )∥

+D11{1 + ∥Y ∥2}∥P2(t,X, Y )∥,

where D11 = ∆f , for all t ≥ 0, X, Y ∈ Rn.

This completes the proof of Lemma (6.4).
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Proof of Theorem (5.4)

From Lemma (6.4), we have that the derivative V̇ of the function V defined in (6.1),

satisfied

V̇ |(1.2) ≤ −D4{∥ X ∥2 + ∥ Y ∥2}+D11∥Y ∥∥P2(t,X, Y )∥+∆c∥X∥∥P1(t,X, Y )∥.

From the hypothesis (vi) of Theorem (5.4), we obtain,

V̇ |(1.2) ≤ −D4{∥ X ∥2 + ∥ Y ∥2}+D11θ3(t)∥Y ∥{1 + ∥Y ∥}+∆cϕ3(t)∥X∥{1 + ∥X∥},

≤ −D4{∥ X ∥2 + ∥ Y ∥2}+∆cϕ3(t){∥X∥+ ∥X∥2}+D11θ3(t){∥Y ∥+ ∥Y ∥2}.

Now, suppose D12 = max{∆c;D11} and 0 ≤ α5 = max{θ3(t);ϕ3(t)}. Then, we obtain

V̇ |(1.2) ≤ −D4{∥ X ∥2 + ∥ Y ∥2}+ α5D12{∥X∥+ ∥Y ∥}+D12α5{∥X∥2 + ∥Y ∥2}.

Using the following inequalities in the above

{∥X∥+ ∥Y ∥} ≤ 2
1
2{∥X∥2 + ∥Y ∥2}

1
2 ,

we have,

V̇ |(1.2) ≤ −{D4 −D12α5}{∥X∥2 + ∥Y ∥2}+ 2
1
2D12α5{∥X∥2 + ∥Y ∥2}

1
2 .

Taking α6 =
1
2
(D4 −D12α5), α5 < D4D

−1
12 and α7 = 2

1
2α5D12, we have

(6.6) V̇ |(1.2) ≤ −2α6{∥X∥2 + ∥Y ∥2}+ α7{∥X∥2 + ∥Y ∥2}
1
2 .

If we choose (∥X∥2 + ∥Y ∥2) 1
2 ≥ α8 = 2α7α

−1
6 , then the inequality (6.6) implies that

(6.7) V̇ |(1.2) ≤ −α6{∥X∥2 + ∥Y ∥2}.

Suppose we take (∥X∥2 + ∥Y ∥2) 1
2 ≥ max{α− 1

2
6 , α8}, then (6.7) becomes

V̇ |(1.2) ≤ −1.

The conclusion of the proof of the theorem follows exactly as in ([12],[19]) or the proof

of our Theorem (5.4).

7. Examples

We provide in this section, two examples to show the correctness of our main

results.

Example 7.1. First, let P1(t,X, Y ) ≡ 0, P2(t,X, Y ) ≡ 0 in (1.1) and n = 2 such that

X =

(
x1

x2

)
, Ẋ =

(
ẋ1

ẋ2

)
, Y =

(
y1

y2

)
, Ẏ =

(
ẏ1

ẏ2

)
,

F (X) =

(
tan−1 x1 − 1.01x1

−0.1x2

)
, G(Y ) =

(
sin y1 − 2y1

sin y2 − 2y2

)
, B =

(
−2 0

0 −1

)
,
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C =

(
1 0

0 1.1

)
.

From the above, the following systems of first order differential equations are obtained.

ẋ1 = tan−1 x1 − 1.01x1 − 2y1,

ẋ2 = −0.1x2 − y2,

ẏ1 = x1 + sin y1 − 2y1,

ẏ2 = 1.1x2 + sin y2 − 2y2.

The Jacobian matrices of vectors F (X) and G(Y ) are respectively

Jf (X) =

(
1

1+x2
1
− 1.01 0

0 −0.1

)
and Jg(Y ) =

(
cos y1 − 2 0

0 cos y2 − 2

)
.

Also, the product matrices Jf (X)Jg(Y ) = Jg(Y )Jf (X) and BC = CB are

Jf (X)Jg(Y ) =

(
cos y1−2
1+x2

1
− 1.01 cos y1 + 2.02 0

0 −0.1 cos y2 + 0.2

)
= Jg(Y )Jf (X),

and

BC =

(
−2 0

0 −1.1

)
= CB.

It easy to show by some elementary calculations that the eigenvalues of matrices

B,C, Jf (X), and Jg(Y ) satisfy:

δb = −2 ≤ λi(B) ≤ ∆b = −1,

δc = 1 ≤ λi(C) ≤ ∆c = 1.1,

δf = −1.01 ≤ λi(Jf (X)) ≤ ∆f = −0.01,

δg = −3 ≤ λi(Jg(Y )) ≤ ∆g = −1.

Therefore, matrices B, Jf (X), Jg are symmetric and negative definite while matrix C

is symmetric and positive definite. Hence, all the conditions of Theorem (3.1) hold.

Example 7.2. In addition to Example (7.1), let,

P1(t,X, Y ) =
1

[t2 + (x1 + x2)2 + (y1 + y2)2 + 1]2

and

P2(t,X, Y ) =
2

[et + sin2(x1 + x2) + sin2(y1 + y2) + 1]2
.
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Then,

∥P1(t,X, Y )∥ =
1

t2 + (x1 + x2)2 + (y1 + y2)2 + 1
,

≤ 1

(t2 + 1)
,

= ϕ(t)

≤ 1.

Similarly,

∥P2(t,X, Y )∥ =

√
2

et + sin2(x1 + x2) + sin2(y1 + y2) + 1
,

≤
√
2

(et + 1)
,

= θ(t),

≤
√
2.

Also, all the conditions of Theorem (3.2) are satisfied by this example.
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