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ABSTRACT. In this paper, we examine the complex dynamics of a linearly damped Morse oscil-

lator subjected under parametric and external excitations. The inclusion of a parametric excitation

term adds complexity and interest to the analysis of the Morse oscillator. The unperturbed Morse

oscillator features a degenerate fixed point at infinity, which is resolved by applying a McGehee-type

transformation. This transformation regularizes the stationary fixed point, making it possible to

apply the Melnikov method effectively to the system. Using analytical techniques, including the

Melnikov theory, we derive threshold conditions for the occurrence of horseshoe chaos in the per-

turbed Morse oscillator. From these threshold conditions, we analyze the onset of horseshoe chaos

numerically by measuring the time, τM , between successive changes in the sign of M(τ). Results

show that as the depth of the potential well (a) increases, the threshold for horseshoe chaos also

increases when varying the amplitude (f) of the external excitation. Conversely, the threshold for

horseshoe chaos decreases as the amplitude (η) of the parametric excitation increases. The analytical

findings are illustrated through numerical simulations, employing nonlinear analysis tools such as bi-

furcation diagrams, phase portraits, Poincaré maps, and measuring the time τM between successive

sign changes in M(τ).
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1. INTRODUCTION

A vibrating system may be either forced or unforced, with forced systems playing

a critical role in a wide range of applications across engineering and physics. The

forces applied to such systems can be external, parametric, or a combination of both.
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For example, a spring-mass system subjected to a continuous sinusoidal force repre-

sents an externally forced system, where key parameters include the stiffness of the

spring and the mass. Conversely, when the stiffness of the spring varies periodically

over time, the system is considered parametrically forced. Parametric forcing arises

naturally in many real-world scenarios. A classic example is a child on a swing who

adjusts the position of their legs to inject energy into the system, thereby increasing

the swing’s amplitude. Other examples include a gear-pair system with periodically

varying stiffness and a pendulum subjected to vertical oscillations [1-5]. Over the

past two decades, there has been growing interest in research on nonlinear dynamics

involving both parametric and external excitations [6-11].

The chaotic dynamics in nonlinear systems have long been a significant area of

research, as such systems exhibit sensitivity to initial conditions and complex, unpre-

dictable behaviors. Among the various forms of chaos, horseshoe dynamics present a

particularly intriguing case. First introduced by Smale in the context of hyperbolic

systems, horseshoe chaos involves phase space trajectories that undergo stretching

and folding, creating a structure reminiscent of a horseshoe shape. This form of

chaos is highly sensitive to perturbations, leading to intricate structures in the phase

space of dynamical systems. Chaos is a well-established phenomenon in Hamiltonian

dynamics. To analyze chaotic motion in perturbed nonlinear dynamical systems or

identify the parameter regions where chaos occurs, the Melnikov technique serves as

a highly effective tool. This method provides an analytic criterion for chaos in weakly

perturbed Hamiltonian systems . The Melnikov function quantifies the transverse

distance between the stable and unstable manifolds associated with an unstable pe-

riodic orbit. The presence of isolated odd zeros in the Melnikov function indicates

transverse intersections of these manifolds, marking the onset of chaos. Inspired by

Melnikov’s seminal work [12], this approach was further developed in detail in [6,7]

and is also discussed in [13]. This is the methodology we will employ here. Recently,

the Melnikov method has been successfully applied to certain nonlinear systems to

predict the occurrence of horseshoe chaos [14-24].

The Morse oscillator is one of the most prominent examples of an anharmonic

oscillator and has found widespread applications. It serves as a realistic model for

describing the vibrations of a diatomic molecule and is of significant interest both

experimentally and theoretically. Additionally, the Morse oscillator remains a valu-

able model for the true interatomic potential energy. Numerous studies have explored

the Morse oscillator using classical, semiclassical, and quantum mechanical methods

[25-33]. Specifically, Guruparan et al. [34-36] analyzed various nonlinear phenom-

ena in the classical Morse oscillator, including the coexistence of multiple attractors,

hysteresis, and vibrational resonance under the influence of different periodic forces.

Abirami et al. [37] discovered vibrational resonance in the Morse oscillator when
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subjected to two periodic forces. Knob et al. [38] studied the bifurcation structure

of the classical Morse oscillator driven by periodic excitation, while Jing et al. [39]

examined the bifurcations of periodic orbits leading to chaos in a damped and driven

Morse oscillator. Additionally, the dynamics of a quasi-periodically forced Morse

oscillator were investigated by Beigie et al. [40]. The parameter stability problem

in parametrically excited systems is both important and challenging. However, the

study of global bifurcations and chaotic dynamics in such systems is relatively less

explored, particularly in the context of vibrations of a diatomic molecule with a time-

varying damping coefficient and external excitation. In this paper, we analyze, both

analytically and numerically, the effects of parametric and external periodic forcing

on the dynamics of the Morse oscillator.

2. Damped and Parametrically Driven Morse Oscillator

The differential equation that describes the damped and driven Morse oscillator

(DDMO) system is as follows:

(2.1) ẍ+ αẋ− 2ab e−bx(e−bx − 1) = f sinωt,

where x represents the distance between the atoms, a > 0 is the depth of the potential

well (defined relative to the dissociated atoms), and b > 0 controls the width of

the potential well (b small corresponds to a wide well, while large b corresponds

to a narrow well). Here, α is the damping coefficient, and f and ω represent the

amplitude and frequency of the driving force, respectively. Figure 1(a) shows the

harmonic oscillator potential. A simple harmonic oscillator does not predict bond

dissociation. It provides a good fit at low excitation but performs poorly at high

excitation, explaining only the fundamental vibrations and not the overtones. In

contrast, the Morse potential offers a better approximation for the potential energy

of vibrating diatomic molecules. We now consider the Morse potential, a convenient

model for interatomic interactions in diatomic molecules. The potential is given by

[41]:

(2.2) V (x) = a (e−2bx − 2 e−bx).

Figure 1(b) illustrates the nature of the Morse potential curve for three different

values of a = 1.0, 2.0, and 4.0. This curve demonstrates how real molecules do not

exactly follow the law of simple harmonic motion. While real bonds are elastic, they

do not adhere to Hooke’s law due to inhomogeneities. The potential V (x) has a local

minimum at x = 0, with V (x)→∞ as x→ −∞, and it approaches zero as x→∞.

In the present work, we consider a periodic excitation of the parameter a is of the

form is

a −→ a(1 + η sin(Ωt))
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Figure 1. (a) Simple harmonic oscillator potential V (x) = 1
2
kx2. (b)

Morse potential curves for three different values of a.

where η and Ω represent the amplitude and frequency of the parametric periodic

forcing, respectively. The perturbation is primarily due to small damping, along with

parametric and external periodic excitations applied to the system. We focus on a

Morse oscillator subjected to both parametric and external periodic excitations with

two frequencies. The equation of motion for this combined excitation is given by:

ẋ = y,(2.3a)

ẏ = 2ab e−bx(e−bx − 1) + ε
[

−αy + 2abη e−bx(e−bx − 1) sin(Ωt) + f sin(ωt)
]

(2.3b)

with ε << 1. The unperturbed system is Hamiltonian, and the Hamiltonian function

is given by

(2.4) H(x, y) =
y2

2
+ 2a e−bx(1− 1

2
e−bx) = I

From the Hamiltonian H(x, y), we see that y = ±
√

2I − 2ae−bx(2− e−bx). Analyzing

the unperturbed system, we identify the equilibrium point at (∞, 0), which is a non-

hyperbolic equilibrium point. The phase portrait of the unperturbed system for

various values of the potential well depth a (with b = 1) is shown in Fig. 2(a). The

homoclinic orbits for various energy values I of the unperturbed system (with a = 1

and b = 1) are shown in Fig. 2(b). The homoclinic orbit occurs at I = 0.

Consider the unperturbed system,

ẋ0 = y0 = P (x, y)(2.5a)

ẏ0 = 2ab e−bx(e−bx − 1) = Q(x.y)(2.5b)

The matrix

M =

(

a1 a2

a3 a4

)

where a1 = ∂P
∂x
|(x0,y0), a2 = ∂P

∂y
|(x0,y0), a3 = ∂Q

∂x
|(x0,y0) and a4 = ∂Q

∂y
|(x0,y0). Now we

calculate the values of a1 = 0, a2 = 1, a3 = 2ab2e−bx0 [1−2e−bx0 ] and a4 = 0. Therefore,
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Figure 2. (a) Phase portrait of the unperturbed system for various

values of depth of the potential well a with b = 1. (b) The homoclinic

orbits for various energy values I of the unperturbed system with a = 1

and b = 1. The homoclinic orbit occurs for I = 0.

the matrix M becomes,

M =

(

0 1

2ab2e−bx0 [1− 2e−bx0 ] 0

)

and det(M) = −2ab2e−bx0 [1 − 2e−bx0 ]. det(M) = 0 at x0 = ∞. Also the system

(Eq.2.3) has the fixed point (x∗, y∗) = (∞, 0). For the fixed point (∞, 0), the deter-

minant of the Jacobian is zero, indicating that both eigenvalues of the equilibrium

point (∞, 0) are zero. Therefore, this point is a degenerate fixed point, and the Mel-

nikov method cannot be directly applied. A McGehee-type transformation resolves

the degeneracy of the stationary point at infinity, with the parabolic orbit of the

original system corresponding to a homoclinic orbit in the new coordinates. Conse-

quently, the Melnikov method becomes applicable, revealing a chaotic region in the

phase space near the parabolic orbit of the unperturbed system.

3. McGehee-type coordinate transformation and Melnikov analysis

3.1. McGehee-type coordinate transformation. : To desigularize the equilib-

rium point (∞, 0), we perform the following McGehee-type transformation [42,43,44]

This transformation changes the variables to local coordinates at∞ and reparametrizes
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the time

x = −2

b
ln(u),(3.1a)

y = v(3.1b)

ds

dt
=

−b

2
u, ⇒ t(s) = −2

b

∫

ds

u(s)
(3.1c)

In new coordinates, the (Eq.2.3) are given by

ẋ = y(3.2a)

du

ds
= y = v.(3.2b)

Since, x = −2
b
ln(u) =⇒ ln(u) = − bx

2
, u = e−bx/2 =⇒ u2 = e−bx

(3.2c) ẏ =
dv

ds
= 2abu2[u2 − 1] + ε

[

−αv + 2ab u2(u2 − 1) η sin(Ωt) + f sin(ωt)
]

Since, b = − 2
u

ds
dt

dv

ds
= 2a

[

−2

u

ds

dt

]

u2(u2 − 1) + ε

[

−αv + 2a

[

−2

u

ds

dt

]

u2(u2 − 1)η sin(Ωt) + f sin(ωt)

]

= −4au(u2 − 1)
ds

dt
+ ε

[

−αv − 4au(u2 − 1)
ds

dt
η sin(Ωt) + f sin(ωt)

]

= 4au(1− u2)
ds

dt
+ ε

[

−αv + 4au(1− u2)
ds

dt
η sin(Ωt) + f sin(ωt)

]

(3.3)

Since −αv = −αy

dv

ds
= 4au(1− u2) + ε

[

−αv
ds
dt

+ 4au(1− u2)η sin(Ωt(s)) +
f
ds
dt

sin(ωt(s))

]

= 4au(1− u2) + ε

[

− αv

(−bu/2)
+ 4au(1− u2)η sin(Ωt(s)) +

f

(−bu/2)
sin(ωt(s))

]

dv

ds
= 4au(1− u2) + ε

[

2αv

(bu)
+ 4au(1− u2)η sin(Ωt(s))− 2f

(bu)
sin(ωt(s))

]

(3.4)

The corresponding unperturbed system is,

(3.5)
du0

ds
= v0,

dv0

ds
= 4au0(1− u2

0)

In this case, the fixed point is (u0, v0) = (0, 0) and is now a non-degenerate hyperbolic

fixed point. Now the matrix

(3.6) M =

(

a1 a2

a3 a4

)

=

(

0 1

4a(1− 3u2
0) 0

)
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(3.7) det(M − λI) =

(

−λ 1

4a(1− 3u2
0) −λ

)

=⇒ λ2 − 4a(1− 3u2
0) = 0.

Since u0 = 0, λ2 − 4a = 0 ⇒ λ = ±2√a. So the fixed point (u0, v0) = (0, 0) is a

non-degenerate hyperbolic fixed point with eigenvalues λ1,2 = ±2√a. The system is

now suitable for applying the Melnikov method. Rewriting the Hamiltonian in the

new coordinates gives the following first integral. ,

(3.8) I =
1

2
v2

0 + au2
0(u

2
0 − 2).

We can express the first integral as v0 = ±
√

2I − 2au2
0(u

2
0 − 2). The homoclinic

solution corresponds to I = 0. For I 6= 0, Homoclinic bifurcations occurs. The

homoclinic solution corresponds to

u0(s, s0) = ±
√
2 sech

(

2
√
a(s− s0)

)

,(3.9a)

v0(s, s0) = ∓2
√
2a sech

(

2
√
a(s− s0)

)

tanh
(

2
√
a(s− s0)

)

.(3.9b)

Using the new coordinates, the parameterized time becomes

t(s) = −2

b

∫

ds

u(s)
= −2

b

∫

ds√
2 sech(2

√
a(s− s0))

=
−2√
2b

∫

cosh(2
√
a(s− s0))ds

=
−2√
2b

[

sinh(2
√
a(s− s0))

]

(2
√
a)−1 + τ

=
−1

b
√
2a

[

sinh(2
√
a(s− s0))

]

+ τ(3.10)

where τ is the constant of integration. Thus

t(s) = τ − 1

b
√
2a

[

sinh(2
√
a(s− s0))

]

(3.11a)

⇒ t(s) = τ − s′

b
√
2a

(3.11b)

where s′ = sinh (2
√
a(s− s0)) and τ is the constant of integration which corresponds

to initial time.

3.2. Melnikov Analysis. The application of Melnikov criterion allows of easy pre-

diction of the critical values of parameters that make chaos suppression/appearance

possible. The Melnikov function may be written in the form [43]

(3.12) M(τ) =

∫ ∞

−∞
X̂s

0Ids

X̂s
0 is the vector field of the perturbation.

(3.13) X̂s
0 =

[

2αv0

(bu0)
+ 4au0(1− u2

0)η sin(Ωt(s, s0))−
2f

bu0

sin(ωt(s, s0))

]

∂

∂v0
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which acts on the first integral (Eq.3.8). For the practical analysis of the Melnikov

integral one needs the unperturbed separatrix solutions as a function of t and τ . Now
∂I
∂v0

= v0 and

(3.14) X̂s
0 =

[

2αv0

(bu0)
+ 4au0(1− u2

0)η sin(Ωt(s, s0))−
2f

bu0

sin(ωt(s, s0))

]

∂I

∂v0

(3.15) X̂s
0 =

[

2αv0

(bu0)
+ 4au0(1− u2

0)η sin(Ωt(s, s0))−
2f

bu0

sin(ωt(s, s0))

]

v0.

Then the Melnikov becomes

M(τ) =

∫ ∞

−∞
X̂s

0Ids

=

[

2αv2
0

(bu0)
+ 4au0v0(1− u2

0)η sin(Ωt(s, s0))−
2f

bu0

v0 sin(ωt(s, s0))

]

ds(3.16)

= M1 +M2 + M3

where

M1 =

∫ ∞

−∞

[

2αv2
0

(bu0)

]

ds(3.17)

M2 =

∫ ∞

−∞
4au0v0(1− u2

0)η sin(Ωt(s, s0))ds(3.18)

M3 = −
∫ ∞

−∞

2f

bu0

v0 sin(ωt(s, s0))ds(3.19)

Now we calculate the integrals M1,M2 and M3. First we calculate the integral value

of M1

M1 =

∫ ∞

−∞

[

2αv2
0

(bu0)

]

ds

=

∫ ∞

−∞
2α

[

−2
√
2a sech (2

√
a(s− s0)) tanh (2

√
a(s− s0))

]2

b
√
2 sech (2

√
a(s− s0))

ds

=
8
√
2aα

b

∫ ∞

−∞
sech[2

√
a(s− s0)]tanh

2[2
√
a(s− s0)]ds

Since u = 2
√
a(s− s0), du = 2

√
ads, ds = du

2
√

a

M1 =
8
√
2aα

b

∫ ∞

−∞
sech(u)tanh2(u)

du

2
√
a

=
4
√
2aα

b

∫ ∞

−∞
sech(u)tanh2(u)du

=
4
√
2aα

b
× π

2
.

Therefor the value of integral M1 is

(3.20) M1 =
2
√
2aα

b
π
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Next we workout the integral value of M2

M2 =

∫ ∞

−∞
4au0v0(1− u2

0)η sin(Ωt(s, s0))ds

= 4aη

∫ ∞

−∞
u0v0(1− u2

0) sin(Ωt(s, s0))ds

= 4aη

∫ ∞

−∞

[√
2 sech(2

√
a(s− s0))

] [

−2
√
2a sech(2

√
a(s− s0)) tanh(2

√
a(s− s0))

]

[

1− 2sech2(2
√
a(s− s0))

]

sin(Ωt(s, s0))ds.

= −8aη2
√
2a

∫ ∞

−∞
sech2(2

√
a(s− s0)) tanh(2

√
a(s− s0)) sin(Ωt(s, s0))

+8aη2
√
2a

∫ ∞

−∞
2sech4(2

√
a(s− s0)) tanh(2

√
a(s− s0)) sin(Ωt(s, s0))ds,

Since u = 2
√
a(s− s0), du = 2

√
ads, ds = du

2
√

a

M2 = −8aη
∫ ∞

−∞
sech2utanhu sin(Ωt)du+ 8aη 2

∫ ∞

−∞
2sech4utanhu sinΩtdu,

= M21 + M22.

Since,

sinΩt = sinΩ(τ − 1

b
√
2a

sinh(2
√
a(s− s0))

= sinΩ(τ − s′

b
√
2a

)

= sinΩτ cos
Ωs′

b
√
2a
− cosΩτ sin

Ωs′

b
√
2a

Now substituting the above in the M21 and M22 equations and simplifying we get

M21 = −8aη
∫ ∞

−∞
sech2utanhu

[

sinΩτ cos
Ωs′

b
√
2a
− cosΩτ sin

Ωs′

b
√
2a

]

du

= −8aη
∫ ∞

−∞
sech2utanhu sinΩτ cos

Ωs′

b
√
2a

du

+8aη

∫ ∞

−∞
sech2utanhu cosΩτ sin

Ωs′

b
√
2a

du(3.21)

Similarly we can calculate the integral M22

M22 = 16aη

∫ ∞

−∞
sech4utanhu sinΩτ cos

Ωs′

b
√
2a

du

−16aη
∫ ∞

−∞
sech4utanhu cosΩτ sin

Ωs′

b
√
2a

du.(3.22)
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In Eqs.(3.21) and (3.22), the first part of the integral value is zero and the remaining

integral value, that is,

M21 = 8aη cosΩτ

∫ ∞

−∞
sech2utanhu sin

Ωs′

b
√
2a

du

M22 = −16aη cosΩτ

∫ ∞

−∞
sech4utanhu sin

Ωs′

b
√
2a

du

M2 = M21 +M22

After integrating the integral value of M2 is

(3.23) M2 = −π
√
2aΩη

b

(

Ω

b
√
2a
− 1

)

e

(

− Ω

b
√
2a

)

cosΩτ.

Then we calculate the integral value of M3

M3 = −
∫ ∞

−∞

2f

bu0

v0 sin(ωt(s, s0))ds

= −2f

b

∫ ∞

−∞

v0

u0

sin(ωt(s, s0))ds(3.24)

Before we compute the integral (Eq.3.24), we make the substitution,

(3.25) s′ = sinh(2
√
a(s− s0))

After rewriting the integral (Eq.3.24) interms of s′, it becomes,

(3.26) M3(s
′) =

f

b

∫ ∞

−∞

2s′

(1 + s′2)
sinωt(s′)ds′

and

(3.27) t(s′) = τ − s′

b
√
a

Note that

sinωt = sinω(τ − s′

b
√
2a

)

= sinωτ cos
ωs′

b
√
2a
− cosωτ sin

ωs′

b
√
2a

Therefore Eq.(3.26) becomes

(3.28) M3(τ) =
f

b

∫ ∞

−∞

2s′

(1 + s′2)

[

sinωτ cos
ωs′

b
√
2a
− cosωτ sin

ωs′

b
√
2a

]

ds′

Since

(3.29)

∫ ∞

−∞

s′

1 + s′2
cos

ωs′

b
√
2a

ds′ = 0

and

(3.30)

∫ ∞

−∞

s′

1 + s′2
sin

ωs′

b
√
2a

ds′ = πe−ω/b
√

2a
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Therefore Eq.(3.28) becomes

(3.31) M3(τ) =
2πf

b
e−ω/b

√
2a cosωτ

Substituting the Eqs.(3.20),(3.23) and (3.31) in Eq.(3.16), we get

(3.32)

M±(τ) =
2
√
2aα

b
π∓ π

√
2aΩη

b

(

Ω

b
√
2a
− 1

)

e

(

− Ω

b
√
2a

)

cosΩτ ± 2πf

b
e−ω/b

√
2a cosωτ

Now the Eq.(3.32) can be written as

(3.33a) M±(τ) = A±Bη cosΩτ ± Cf cosωτ.

where

A =
2
√
2aα

b
π(3.33b)

B = −π
√
2aΩ

b

(

Ω

b
√
2a
− 1

)

e

(

− Ω

b
√
2a

)

(3.33c)

C =
2π

b
e−ω/b

√
2a.(3.33d)

From these equations (Eqs.3.33), we can obtain the necessary condition for the oc-

currence of horseshoe chaos.

4. Results of Numerical simulations

In this section, we study the occurrence of horseshoe chaos both analytically and

numerically, focusing on the onset of chaos in the system described by Eq.(2.3) for

two cases: ω = Ω and ω 6= Ω. First, we analyze the occurrence of horseshoe chaos

for the case ω = Ω by varying the amplitude f of the external periodic force while

keeping the value of η fixed. Then, we fix the value of f and vary the amplitude η of

the parametric excitation force. Finally, we examine the case where ω 6= Ω.

4.1. Horesshoe chaos for the case ω = Ω.

4.1.1. Horseshoe Chaos for Varying f and Fixed η. We analyze the occurrence

of horseshoe chaos numerically by measuring the time τM elapsed between two succes-

sive changes in the sign of M(τ). The value of τM can be determined from Eq. (3.33).

In our numerical simulations, we fix the parameters in Eq. (3.33) as α = 0.8, b = 3.0,

and Ω = ω = 2.0. Figure 3 shows the variation of 1/τ±M versus f for two values of a,

namely a = 0.5 and a = 1.0. The continuous curve represents the inverse of the first

intersection time (1/τ+
M) of the stable and unstable branches of the homoclinic orbits

W+, while the dashed curve corresponds to the orbits W−. Horseshoe dynamics does

not occur when 1/τ is zero, but it occurs in the region where 1/τ > 0. In Fig. 3(a),

where a is fixed at 0.5, 1/τ+
M is zero (i.e., τ±M is infinite) for 0 < f < 0.805414, indi-

cating that no horseshoe chaos occurs in this range of f . For values of f greater than
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Figure 3. Variation of 1/τ±M versus f for two values of a = 0.5 and

1.0. Continuous curve is for positive sign of M(τ) and dashed curve is

for negative sign of M(τ) given by Eq.(3.33). The values of the other

parameters in Eq.(3.33) are η = 0.1, α = 0.8, b = 3.0, Ω = ω = 2.
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Figure 4. (a) Bifurcation diagram of the system (Eq.2.3) as a function

of f for a = 0.5. (b) Magnification of a part of bifurcation diagram

of Fig.4(a). The values of the other parameters in Eq.(2.3) are η =

0.1, α = 0.8, b = 3.0,Ω = ω = 2.0.

0.805414, both M+(τ) and M−(τ) oscillate, and therefore 1/τ±M is nonzero. Thus,

when f > 0.805414, horseshoe chaos becomes possible. In Fig. 3(b), with a fixed at

1.0, 1/τ±M is zero for 0 < f < 1.891458, meaning no horseshoe chaos occurs in this

interval. For f > 1.891458, 1/τ±M becomes nonzero, indicating that horseshoe chaos

is possible. Figure 3 illustrates that the Melnikov threshold for horseshoe chaos (fM)

increases as the depth of the potential well increases.

To verify the analytical results obtained above, we numerically integrated the

system (Eq. 2.3) using the fourth-order Runge-Kutta method to investigate the

homoclinic chaos in the system. First, we examine the effect of the external forcing

term on the oscillator and how the dynamics of the oscillator are affected as the forcing

amplitude f is varied. Figure 4(a) shows the bifurcation diagram of the system (Eq.

2.3) for a = 0.5, η = 0.1, α = 0.8, b = 3.0, and Ω = ω = 2.0. For small values of f , the

system has two coexisting periodic attractors with period T (= 2π/ω). One attractor

is in the region x < 0, and the other is in the region x > 0. As f increases, the period-

T attractor in the region x < 0 undergoes a period-doubling bifurcation, leading to

the onset of chaos, which is clearly seen in Fig. 4(a). For clarity, a magnified part

of the bifurcation diagram from Fig. 4(a) is shown in Fig. 4(b), where coexisting

attractors, period-doubling bifurcations, and chaotic orbits are clearly visible. For
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a = 0.5, the onset of chaos occurs at fc = 0.813723. The bifurcation diagram of

the system (Eq. 2.3) for a = 1.0 is shown in Fig. 5(a), where we again observe

various bifurcations and chaotic orbits. For a = 1.0, the onset of chaos occurs at

fc = 1.900893. For clarity, a magnified part of the bifurcation diagram from Fig. 5(a)

is shown in Fig. 5(b).
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Figure 5. (a) Bifurcation diagram of the system (Eq.2.3) as a func-

tion of f for a = 0.5. (b) Magnification of a part of bifurcation di-

agram Fig.5(a). The values of the other parameters in Eq.(2.3) are

η = 0.1, α = 0.8, b = 3.0,Ω = ω = 2.0.
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Figure 6. Phase portraits and the corresponding Poincaré maps of

the system (Eq.2.3) for showing the (a-b) periodic orbit for f = 0.5

and (c-d) chaotic orbit for f = 2.0. The values of the other parameters

in Eq.(2.3) are η = 0.1, α = 0.8, b = 3.0, ω = Ω = 2.0.

Next, we check the threshold of the external forcing amplitude f for the onset

of possible chaos, as obtained analytically. For a = 0.5, the onset of horseshoe

chaos occurs at fM = 0.805414 (Fig. 3(a)), while the onset of chaos is found at

fc = 0.813723 (Fig.4). Similarly, for a = 1.0, the onset of horseshoe chaos occurs at

fM = 1.891458 (Fig. 3(b)), while the onset of chaos occurs at fc = 1.900817 (Fig.5).

The numerical results agree well with the theoretical predictions. Furthermore, the

analytical prediction is also verified by plotting the phase portrait and Poincaré map.
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Figure 6 shows the phase portrait and the corresponding Poincaré map for two values

of f , namely, f = 0.5 and f = 2.0, chosen from Fig. 3(b). For f = 0.5 (i.e., at this

value, 1/τM < 0), a periodic orbit is obtained, as clearly seen in Figs. 6(a) and 6(b).

In contrast, for f = 2.0 (i.e., at this value, 1/τM > 0), a chaotic orbit occurs, which

is clearly observed in Figs. 6(c) and 6(d). These figures confirm that the analytical

results agree well with the numerical results.
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Figure 7. Variation of 1/τ±M versus η for two values of a = 0.5 and

1.0. Continuous curve is for positive sign of M(τ) and dashed curve is

for negative sign of M(τ) given by Eq.(3.33). The values of the other

parameters in Eq.(3.33) are f = 0.1, α = 0.8, b = 3.0 Ω = ω = 2.

4.1.2. Horseshoe Chaos for Varying η and Fixed f . Then, we analyze the oc-

currence of horseshoe chaos numerically by varying the amplitude η with fixed f . To

visually represent the range where horseshoe chaos is possible, we plot in Fig. 7 the

dependence of the amplitude η of the parametric forcing for two different values of

a, namely, a = 0.5 and a = 1.0. In Fig. 7(a), for a = 0.5, horseshoe chaos does not

occur when η < ηM = 1.872075, but horseshoe chaos occurs when η > ηM . In Fig.

7(b), for a = 1.0, 1/ηM± is zero when η < ηM = 1.503267, meaning horseshoe chaos

is not possible. However, when η > ηM = 1.503267, horseshoe chaos occurs. As the

depth of the well increases, the threshold for horseshoe chaos (ηM) decreases, which is

clearly evident in Figs. 7(a) and 7(b). From Figs. 3 and 7, we observe that when the

depth of the potential well (a) increases, the threshold for horseshoe chaos increases

by varying the amplitude (f) of the external excitation. In contrast, the threshold

for horseshoe chaos decreases when the depth of the well (a) decreases by varying

the amplitude (η) of the parametric excitation. These analytical results are verified

numerically.

Figure 8 shows the bifurcation diagrams of the system (Eq. 2.3) as the amplitude

(η) of the parametric forcing excitation increases from small values for two fixed values

of a, namely, a = 0.5 and a = 1.0. The other parameters are fixed at α = 0.8, b = 3.0,

f = 0.1, and ω = Ω = 2.0. In Fig. 8(a), for a = 0.5, the onset of chaos occurs at

ηc = 1.882375, while for a = 1.0, the onset of chaos occurs at ηc = 1.516342, as

clearly seen in Fig. 8(b). From Figs. 7 and 8, the analytical results agree well with
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Figure 8. Bifurcation diagrams of the system (Eq.2.3) as a function

of η for (a) a = 0.5 and (b) a = 1.0. The values of the other parameters

in Eq.(2.3) are f = 0.1, α = 0.8, b = 3.0,Ω = ω = 2.0.
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Figure 9. Phase portraits and the corresponding Poincaré maps of

the system (Eq.2.3) for showing the (a-b) periodic orbit for η = 0.5 and

(c-d) chaotic orbit for η = 1.56. The values of the other parameters in

Eq.(2.3) are a = 1.0, f = 0.1, α = 0.8, b = 3.0,Ω = ω = 2.0.

the numerical results. The analytical results are also verified by plotting the phase

portrait and Poincaré map of the system (Eq. 2.3) for two values of η, chosen from

Fig. 7(b). The results are presented in Fig. 9. For η = 0.5 (i.e., η < ηM = 1.503267),

periodic behavior occurs, as shown in Figs. 9(a) and 9(b). For η = 1.56 (i.e., η > ηM),

chaotic behavior occurs, as clearly seen in Figs. 9(c) and 9(d). For both values of

a, we observe various dynamical behaviors, including bifurcations of periodic orbits,

coexisting attractors, and chaotic orbits in the system (Eq. 2.3).

4.2. The Effect of Damping Strength (α) on Bifurcation Analysis. First, we

analyze the effect of parametric excitation on the bifurcation behaviors of the system

(Eq. 2.3). The detailed bifurcation diagrams of η versus x for four different values of

damping strength (α) are shown in Fig. 10. The other parameters are fixed at f = 0.1,

a = 1.0, b = 3.0, and ω = Ω = 2.0. When α = 0.3, we observe periodic solutions
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Figure 10. Bifurcation diagrams of η versus x for four values of

damping strength (α) (a) α = 0.3, (b) α = 1.0, (c) α = 1.5 and

(d) α = 2.0. The values of the other parameters in Eq.(2.3) are

f = 0.1, a = 1.0, b = 3.0,Ω = ω = 2.0.

with periods 2T , 4T , and higher, as well as transient chaotic motion. Finally, at

η = 1.45177, chaotic motion occurs. At η = 1.45782, the motion becomes unbounded.

When the damping strength (α) is increased to 0.8, as seen in Fig. 10(b), chaotic

motion occurs later than in Fig. 10(a). Specifically, at η = 1.58718, the motion

becomes unbounded for α = 0.8. Further increases in the damping strength (α) lead

to the occurrence of chaotic motion later than in Fig. 10(c) and Fig.10(d), with the

appearance of a few short periodic windows. For example, for α = 1.5 and α = 2.0,

chaotic motion occurs at η = 1.75302 and η = 1.91183, respectively.

Next, we analyze the effect of external excitation on the bifurcation behaviors

of the system (Eq. 2.3). The detailed bifurcation diagrams of f versus x for four

different values of damping strength (α) are shown in Fig. 11. The other parameters

are fixed at η = 0.1, a = 1.0, b = 3.0, and ω = Ω = 2.0. When α = 0.3, period-T

and period-2T solutions are observed, but no chaotic motion is present (Fig. 11(a)).

For α = 0.8, 1.5, and 2.0, various bifurcations of periodic orbits, chaotic orbits, and

window regions occur, as clearly seen in Figs. 11(b)-(d). As the value of α increases,

the onset of chaos is delayed.

4.3. The Effect of ω 6= Ω on Horseshoe Chaos. In the previous section, we

considered the case ω = Ω. In this section, we study the case ω 6= Ω to investigate the

occurrence of horseshoe chaos numerically by measuring the time τM elapsed between

two successive transverse intersections. τM can be calculated from Eq. (3.33). Figure

12 shows the plot of 1/τM± versus f for two values of a. The other parameters are

fixed at α = 0.8, b = 3.0, η = 0.1, ω = 2.0, and Ω = (
√
5 + 1)/2. The continuous

curve represents the inverse of the first intersection time 1/τM+ for the stable and

unstable branches of the homoclinic orbits W+. The dashed curve corresponds to
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Figure 11. Bifurcation diagrams of f versus x for four values of

damping strength (α) (a) α = 0.3, (b) α = 1.0, (c) α = 1.5 and

(d) α = 2.0. The values of the other parameters in Eq.(2.3) are

η = 0.1, a = 1.0, b = 3.0,Ω = ω = 2.0.
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Figure 12. Variation of 1/τ±M versus f for two values of a = 0.5 and

1.0. Continuous curve is for positive sign of M(τ) and dashed curve is

for negative sign of M(τ) given by Eq.(3.33). The values of the other

parameters in Eq.(2.3) are η = 0.1, α = 0.8, b = 3.0,Ω = (
√
5 + 1)/2

and ω = 2.
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Figure 13. Bifurcation diagrams of the system (Eq.2.3) as a function

of f for (a) a = 0.5 and (b) a = 1.0. The values of the other parameters

in Eq.(2.3) are η = 0.1, α = 0.8, b = 3.0,Ω = (
√
5 + 1)/2 and ω = 2.0.

the orbit of W−. Horseshoe chaos does not occur when 1/τM is zero, and it occurs

in the region where 1/τM > 0. In Fig. 12(a), where the value of a is fixed at 0.5,

1/τM+ is zero in the interval 0 < f < 0.881075, and thus no horseshoe chaos occurs

in this interval of f . For values of f > 0.881075, horseshoe chaos is possible. In Fig.

12(b), where the value of a is fixed at 1.0, 1/τM± is zero for 0 < f < 1.9750438, and
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Figure 15. Bifurcation diagrams of the system (Eq.2.3) as a function

of η for (a) a = 0.5 and (b) a = 1.0. The values of the other parameters

in Eq.(2.3) are f = 0.1, α = 0.8, b = 3.0,Ω = (
√
5 + 1)/2 and ω = 2.0.

nonzero for f > 1.975043. The analytical results obtained from Fig. 12 are verified

by directly integrating the system (Eq. 2.3). The numerical results are presented in

Fig. 13. In Figs. 13(a) and 13(b), for a = 0.5 and a = 1.0, the onset of chaos occurs

at fc = 0.875189 and fc = 1.983872, whereas the analytical values are fM = 0.881075

for a = 0.5 and fM = 1.975043 for a = 1.0. From Figs. 12 and 13, the analytical

results agree well with the numerical results.

Similarly, we analyze the occurrence of horseshoe chaos by varying η with a fixed

f for the case ω 6= Ω. The other parameters are fixed at α = 0.8, b = 3.0, f = 0.1,

ω = 2.0, and Ω = (
√
5 + 1)/2. The analytical and numerical results are presented

in Figs. 14 and 15. In Fig. 14, the analytical values for the occurrence of horseshoe

chaos are ηM = 1.501292 for a = 0.5 (Fig. 14(a)) and ηM = 1.175435 for a = 1.0 (Fig.

14(b)). The numerical results for the onset of chaos are ηc = 1.508752 for a = 0.5

(Fig. 15(a)) and ηc = 1.174782 for a = 1.0 (Fig. 15(b)). These results clearly confirm

that the analytical results agree well with the numerical results.

5. Conclusions

In this paper, we investigated the intricate dynamics of a linearly damped Morse

oscillator under the influence of both parametric and external excitations. The unper-

turbed Morse oscillator has a degenerate fixed point at infinity, which is regularized



MORSE OSCILLATOR WITH MULTIPLE EXCITATIONS 79

by a McGhee-type transformation. The Melnikov method is then applied to this new

set of coordinates in the perturbed system. We derived the analytical criteria for the

appearance of chaos in the sense of Smale using the Melnikov method. By applying

this method, we have determined critical forcing amplitudes fM and ηM above which

the system may exhibit chaotic behavior. We explored the effects of the depth of the

potential well (a) and the amplitudes of both parametric and external excitations on

the Melnikov critical values. Our analysis reveals that the Melnikov critical values

increase as the depth of the well and the external excitation amplitude (f) increase,

while they decrease when the depth of the well and the parametric excitation am-

plitude (η) increase. The same trends were observed in both the ω = Ω and ω 6= Ω

cases. The analytical results were confirmed by plotting bifurcation diagrams, phase

portraits, and Poincar maps, as well as by measuring the time (τM) elapsed between

successive changes in the sign of M(τ). The numerical simulations not only sup-

port the analytical findings but also reveal new and interesting dynamical behaviors.

These complex dynamics appear to arise from the combined influences of the depth

of the well, parametric, and external excitations.

It is important to further study the effects of two parametric forces in a linearly

damped Morse oscillator using both analytical and numerical techniques. This will

be addressed in future work.
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