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ABSTRACT. The authors study the oscillatory behavior of the fourth-order neutral delay differ-

ence equation

∆(m3(ℓ)∆(m2(ℓ)∆(m1(ℓ)∆z(ℓ)))) + q(ℓ)f(y(ℓ− τ)) = 0

where z(ℓ) = y(ℓ) + p(ℓ)y(ℓ − σ), under the conditions that
∑∞

ℓ=ℓ0
m−1

j (s) < ∞, j = 1, 2, 3. New

oscillation criteria are obtained with relatively few conditions. The results established are new to

the literature as is shown through some examples.

AMS (MOS) Subject Classification. 39A10.

Key Words and Phrases. Oscillation, neutral, fourth-order difference equation, noncanonical

form.

1. Introduction

This paper concerns the noncanonical fourth-order neutral delay difference equa-

tion of the form

(E) D4z(ℓ) + q(ℓ)f(y(ℓ− τ)) = 0, ℓ ≥ ℓ0 ≥ 0,

where D0z = z, Djz = mj∆(Dj−1z), j = 1, 2, 3, D4z = ∆(D3z), and z(ℓ) = y(ℓ) +

p(ℓ)y(ℓ− σ). Throughout the paper, we assume that
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(H1) {mj(ℓ)}, j = 1, 2, 3 are positive real sequences for all integers ℓ ≥ ℓ0 and satisfy

Mj(ℓ0) =
∞∑

ℓ=ℓ0

1

mj(ℓ)
< ∞, j = 1, 2, 3;

(H2) {p(ℓ)} and {q(ℓ)} are positive real sequences with 0 ≤ p(ℓ) ≤ p < 1 for all

ℓ ≥ ℓ0;

(H3) σ and τ are positive integers;

(H4) f ∈ C(R,R) is nondecreasing and f(x)
x

≥ L > 0 for all x ̸= 0.

Let θ = max{σ, τ}. By a solution of (E), we mean a real sequence {y(ℓ)} defined

for all ℓ ≥ ℓ0 − θ and which satisfies (E) for all ℓ ≥ ℓ0. We consider only such

solution that are nontrivial for all large ℓ. A solution of (E) is called oscillatory

if it is neither eventually positive nor eventually negative; otherwise, it is called

nonoscillatory. Equation (E) is said to be oscillatory if all its solutions are oscillatory.

Fourth order difference equations arise naturally in discrete-type models relat-

ing to physical, biological, and chemical phenomena, such as, problems in elasticity,

deformation of structures, or soil settlement (see, for example, [1, 9]). Furthermore,

in engineering and population dynamics problems, the existence of oscillatory so-

lutions play an important role. During the past several years, there has been an

increasing interest in obtaining conditions for the oscillation of solutions of differ-

ent classes of fourth-order difference equations with or without deviating arguments;

see [2–8, 10–21, 23–25] and the references cited therein. In particular, the authors

in [4, 10,11,15,19,20,23,25] studied equation (E) in case

(1.1) M1(ℓ0) = M2(ℓ0) = M3(ℓ0) = ∞,

or

(1.2) M1(ℓ0) = M2(ℓ0) = ∞, and M3(ℓ0) < ∞,

or

(1.3) M1(ℓ0) = ∞, M2(ℓ0) < ∞, and M3(ℓ0) = ∞

holds. Following the terminology introduced in [10], we say that equation (E) is in

canonical form if (1.1) holds and is in semi-canonical form if (1.2), or (1.3), or

(1.4) M1(ℓ0) < ∞, and M2(ℓ0) = M3(ℓ0) = ∞

holds.

In [5], the authors studied equation (E) with p(ℓ) ≡ 0 and established some

oscillation criteria under the condition (H1). From a review of the literature, it

seems that there is nothing known about the oscillation of (E) if condition (H1)

holds, and this is due to the fact that finding relationships between a solution {y(ℓ)}
and the corresponding sequence {z(ℓ)} seems to be very difficult. Motivated by this
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observation, in this paper our aim is to fill this gap by presenting some new criteria for

the oscillation of all solutions of (E). Examples are provided to show the importance

of our main results.

2. Main Results

For the sake of brevity, we introduce the following notation. For ℓ ≥ ℓ0, let

M12(ℓ) =
∞∑
s=ℓ

M2(s)

m1(s)
, M23(ℓ) =

∞∑
s=ℓ

M3(s)

m2(s)
,

and

M123(ℓ) =
∞∑
s=ℓ

M23(s)

m1(s)
.

In what follows, we only need to consider eventually positive solutions of (E), since

if {y(ℓ)} satisfies (E), then so does {−y(ℓ)}.

We begin with the following classification type lemma.

Lemma 2.1. Let {y(ℓ)} be an eventually positive solution of (E). Then there is an

integer ℓ1 ≥ ℓ0 such that the corresponding sequence {z(ℓ)} is positive and satisfies

one of the following cases:

(1) D1z(ℓ) > 0, D2z(ℓ) > 0, D3z(ℓ) > 0, D4z(ℓ) ≤ 0,

(2) D1z(ℓ) > 0, D2z(ℓ) > 0, D3z(ℓ) < 0, D4z(ℓ) ≤ 0,

(3) D1z(ℓ) > 0, D2z(ℓ) < 0, D3z(ℓ) > 0, D4z(ℓ) ≤ 0,

(4) D1z(ℓ) > 0, D2z(ℓ) < 0, D3z(ℓ) < 0, D4z(ℓ) ≤ 0,

(5) D1z(ℓ) < 0, D2z(ℓ) > 0, D3z(ℓ) > 0, D4z(ℓ) ≤ 0,

(6) D1z(ℓ) < 0, D2z(ℓ) > 0, D3z(ℓ) < 0, D4z(ℓ) ≤ 0,

(7) D1z(ℓ) < 0, D2z(ℓ) < 0, D3z(ℓ) > 0, D4z(ℓ) ≤ 0,

(8) D1z(ℓ) < 0, D2z(ℓ) < 0, D3z(ℓ) < 0, D4z(ℓ) ≤ 0,

for all ℓ ≥ ℓ1.

Proof. The proof is obvious and so the details are omitted. (The reader might also

wish to consult [1] among other references.)

In the following lemmas, we find relationships between the sequence {y(ℓ)} and

the corresponding sequence {z(ℓ)} if the cases (1)–(8) in Lemma 2.1 are satisfied.

These are essential for obtaining our oscillation criteria for (E).
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Lemma 2.2. Let {y(ℓ)} be an eventually positive solution of (E) with the correspond-

ing sequence {z(ℓ)} satisfying cases (1)–(4) of Lemma 2.1. Then

(2.1) y(ℓ) ≥ (1− p(ℓ))z(ℓ)

for all ℓ ≥ ℓ1 ≥ ℓ0.

Proof. From the cases (1)–(4), we see that z(ℓ) is positive and increasing, and by the

definition of z(ℓ), we have

y(ℓ) = z(ℓ)− p(ℓ)y(σ(ℓ)) ≥ z(ℓ)− p(ℓ)z(σ(ℓ))

≥ (1− p(ℓ))z(ℓ), ℓ ≥ ℓ1 ≥ ℓ0.

This proves the lemma.

Lemma 2.3. Let {y(ℓ)} be an eventually positive solution of (E) with the sequence

{z(ℓ)} satisfying case (5) of Lemma 2.1. Then

(2.2) y(ℓ) ≥
(
1− p(ℓ)M12(ℓ− σ)

M12(ℓ)

)
z(ℓ)

for all ℓ ≥ ℓ1 ≥ ℓ0.

Proof. In view of case (5) of Lemma 2.1, we see that

(2.3) −D1z(ℓ) ≥ D1z(∞)−D1z(ℓ) =
∞∑
s=ℓ

1

m2(s)
D2z(s) ≥ M2(ℓ)D2z(ℓ),

so

∆

(
−D1z(ℓ)

M2(ℓ)

)
= −(M2(ℓ)D2z(ℓ) +D1z(ℓ))

m2(ℓ)M2(ℓ)M2(ℓ+ 1)
≥ 0.

Therefore,

(2.4)
−D1z(ℓ)

M2(ℓ)
is nondecreasing.

Now, using (2.4), we have

z(ℓ) ≥ −
∞∑
s=ℓ

M2(s)D1z(s)

m1(s)M2(s)
≥ −D1z(ℓ)

M2(ℓ)
M12(ℓ)

and

∆

(
z(ℓ)

M12(ℓ)

)
=

M12(ℓ)D1z(ℓ) +M2(ℓ)z(ℓ)

m1(ℓ)M12(ℓ)M12(ℓ+ 1)
≥ 0.

Hence,

(2.5)
z(ℓ)

M12(ℓ)
is nondecreasing.

From the definition of z(ℓ) and (2.5), we have

y(ℓ) ≥ z(ℓ)− p(ℓ)z(ℓ− σ) ≥
(
1− p(ℓ)M12(ℓ− σ)

M12(ℓ)

)
z(ℓ), ℓ ≥ ℓ1,

and this completes the proof.
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Lemma 2.4. Let {y(ℓ)} be an eventually positive solution of (E) with the sequence

{z(ℓ)} satisfying case (6) of Lemma 2.1. Then

(2.6) y(ℓ) ≥
(
1− p(ℓ)M123(ℓ− σ)

M123(ℓ)

)
z(ℓ)

for all ℓ ≥ ℓ1 ≥ ℓ0.

Proof. In view of case (6) of Lemma 2.1, we see that

D2z(ℓ)−D2z(∞) = −
∞∑
s=ℓ

1

m3(s)
D3z(s) ≥ −M3(ℓ)D3z(ℓ).(2.7)

Hence,

∆

(
D2z(ℓ)

M3(ℓ)

)
=

M3(ℓ)D3z(ℓ) +D2z(ℓ)

m3(ℓ)M3(ℓ)M3(ℓ+ 1)
≥ 0,

which shows that
{

D2z(ℓ)
M3(ℓ)

}
is nondecreasing. Using this property, we see that

(2.8) −D1z(ℓ) ≥
∞∑
s=ℓ

1

m2(s)
D2z(s) ≥

D2z(s)

M3(ℓ)

∞∑
s=ℓ

M3(s)

m2(s)
=

M23(ℓ)

M3(ℓ)
D2z(ℓ).

By (2.8), we have

∆

(
−D1z(ℓ)

M23(ℓ)

)
=

−M23(ℓ)D2z(ℓ)−M3(ℓ)D1z(ℓ)

m2(ℓ)M23(ℓ)M23(ℓ+ 1)
≥ 0,

and so
{

−D1z(ℓ)
M23(ℓ)

}
is nondecreasing. We also have

(2.9) z(ℓ) ≥ −
∞∑
s=ℓ

1

m1(s)
D1z(s) ≥

−D1z(ℓ)

M23(ℓ)

∞∑
s=ℓ

M23(s)

m1(s)
=

−M123(ℓ)

M23(ℓ)
D1z(ℓ).

Hence, by (2.9), we obtain that

∆

(
z(ℓ)

M123(ℓ)

)
=

M123(ℓ)D1z(ℓ) +M23(ℓ)z(ℓ)

m1(ℓ)M123(ℓ)M123(ℓ+ 1)
≥ 0,

and so

(2.10)
z(ℓ)

M123(ℓ)
is nondecreasing.

From the definition of z(ℓ) and (2.10), we see that

y(ℓ) ≥ z(ℓ)− p(ℓ)z(ℓ− σ) ≥
(
1− p(ℓ)M123(ℓ− σ)

M123(ℓ)

)
z(ℓ), ℓ ≥ ℓ1,

which completes the proof.

Lemma 2.5. Let {y(ℓ)} be an eventually positive solution of (E) with the sequence

{z(ℓ)} satisfying case (7) or case (8) of Lemma 2.1. Then

(2.11) y(ℓ) ≥
(
1− p(ℓ)M1(ℓ− σ)

M1(ℓ)

)
z(ℓ)

for all ℓ ≥ ℓ1 ≥ ℓ0.
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Proof. Assume that case (7) or case (8) of Lemma 2.1 holds. In both of these cases

we see that z(ℓ) > 0 and D1z(ℓ) is decreasing for all ℓ ≥ ℓ1. Using this, we see that

z(ℓ) ≥ z(ℓ)− z(∞) = −
∞∑
s=ℓ

D1z(s)

m1(s)
≥ −M1(ℓ)D1z(ℓ).

Hence,

∆

(
z(ℓ)

M1(ℓ)

)
=

M1(ℓ)D1z(ℓ) + z(ℓ)

m1(ℓ)M1(ℓ)M1(ℓ+ 1)
≥ 0,

which shows that
{

z(ℓ)
M1(ℓ)

}
is nondecreasing. Using this property in the definition of

z(ℓ), we have

y(ℓ) ≥ z(ℓ)− p(ℓ)z(ℓ− σ) ≥
(
1− p(ℓ)M1(ℓ− σ)

M1(ℓ)

)
z(ℓ),

for all ℓ ≥ ℓ1. This completes the proof of the lemma.

Remark 2.6. Let us define

d(ℓ) = min

{
p(ℓ),

p(ℓ)M1(ℓ− σ)

M1(ℓ)
,
p(ℓ)M12(ℓ− σ)

M12(ℓ)
,
p(ℓ)M123(ℓ− σ)

M123(ℓ)

}
;

then from (2.1), (2.2), (2.6) and (2.11), we have that the relation

y(ℓ) ≥ (1− d(ℓ))z(ℓ)

holds. We further assume going forward that (1− d(ℓ)) > 0 for all ℓ ≥ ℓ1 ≥ ℓ0.

Lemma 2.7. Let {y(ℓ)} be an eventually positive solution of (E) with the correspond-

ing sequence {z(ℓ)} satisfying any of the cases (1)–(8) of Lemma 2.1. Then

(E1) D4z(ℓ) + Lq(ℓ)(1− d(ℓ− τ))z(ℓ− τ) ≤ 0

for all ℓ ≥ ℓ1 ≥ ℓ0.

Proof. Let {y(ℓ)} be an eventually positive solution of (E); then there exists an integer

ℓ1 ≥ ℓ0 such that y(ℓ− σ) > 0 and y(ℓ− τ) > 0 for all ℓ ≥ ℓ1. From Lemmas 2.2 to

2.5, combined with Remark 2.6, we see that

y(ℓ− τ) ≥ (1− d(ℓ− τ))z(ℓ− τ), ℓ ≥ ℓ1,

and using this in (E) along with condition (H4), we obtain (E1). This proves the

lemma.

Next, we define

Q(ℓ, ℓ∗) =
ℓ−1∑
s=ℓ∗

1

m2(s)

s−1∑
t=ℓ∗

1

m3(t)

t−1∑
j=ℓ∗

q(j)(1− d(j − τ))

and

Q(ℓ, ℓ∗) =
ℓ−1∑
s=ℓ∗

q(s)M123(s− τ)

M3(s− τ)
(1− d(s− τ))
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for all ℓ ≥ ℓ∗ and any ℓ∗ ≥ ℓ0.

Lemma 2.8. Let {y(ℓ)} be an eventually positive solution of ℓ ≥ ℓ∗. If

(2.12) Q(∞, ℓ0) = ∞,

then the sequence {z(ℓ)} cannot satisfy any of the cases (1)–(4) in Lemma 2.1.

Proof. From (H1) and (2.12), we can see that

(2.13)
∞∑

ℓ=ℓ0

1

m3(ℓ)

ℓ−1∑
s=ℓ0

q(s)(1− d(s− τ)) =
∞∑

ℓ=ℓ0

q(ℓ)(1− d(ℓ− τ)) = ∞.

Now assume that {y(ℓ)} is an eventually positive solution of (E). Then there exists

an integer ℓ1 ≥ ℓ0 such that y(ℓ − σ) > 0 and y(ℓ − τ) > 0 for all ℓ ≥ ℓ1. From the

definition of z(ℓ), we see that z(ℓ) > 0 and satisfies cases (1)–(4) of Lemma 2.1. In

view of Lemma 2.7, we see that

(2.14) D4z(ℓ) + Lq(ℓ)(1− d(ℓ− τ))z(ℓ− τ) ≤ 0, ℓ ≥ ℓ1.

Since in all four cases, {z(ℓ)} is increasing, there is a constant c > 0 and an integer

ℓ2 ≥ ℓ1 such that z(ℓ− τ) ≥ c for all ℓ ≥ ℓ2. Using this in (2.14), we obtain

(2.15) −D4z(ℓ) ≥ Lcq(ℓ)(1− d(ℓ− τ)), ℓ ≥ ℓ2.

Summing (2.15) from ℓ2 to ℓ− 1 gives

(2.16) −D3z(ℓ) +D3z(ℓ2) ≥ Lc
ℓ−1∑
s=ℓ2

q(s)(1− d(s− τ)).

If we assume that {z(ℓ)} satisfies either case (1) or case (3), then from (2.13) and

(2.16),

(2.17) D3z(ℓ2) ≥ Lc
ℓ−1∑
s=ℓ2

q(s)(1− d(s− τ)) → ∞ as ℓ → ∞,

which is a contradiction.

Next, assume that case (2) holds. From (2.16), we see that

−D3z(ℓ) ≥ Lc

ℓ−1∑
s=ℓ2

q(s)(1− d(s− τ))

or

(2.18) −∆(D2z(ℓ)) ≥
Lc

m3(ℓ)

ℓ−1∑
s=ℓ2

q(s)(1− d(s− τ)).

Summing (2.18) from ℓ2 to ℓ− 1, we obtain

D2z(ℓ2)−D2z(ℓ) ≥ Lc

ℓ−1∑
s=ℓ2

1

m3(s)

s−1∑
t=ℓ2

q(t)(1− d(t− τ)),
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which, in view of (2.13), gives

(2.19) D2z(ℓ2) ≥ Lc

ℓ−1∑
s=ℓ2

1

m3(s)

s−1∑
t=ℓ2

q(t)(1− d(t− τ)) → ∞ as ℓ → ∞.

This is clearly a contradiction.

Finally, assume that case (4) holds. Proceeding as in the last case, we have from

(2.19) that

−∆(D1z(ℓ)) ≥
Lc

m2(ℓ)

ℓ−1∑
s=ℓ2

1

m3(s)

s−1∑
t=ℓ2

q(t)(1− d(t− τ)).

Summing from ℓ2 to ℓ− 1,

(2.20)

D1z(ℓ2)−D1z(ℓ) ≥ Lc
ℓ−1∑
s=ℓ2

1

m2(s)

s−1∑
t=ℓ2

1

m3(t)

t−1∑
j=ℓ2

q(j)(1− d(j − τ)) = LcQ(ℓ, ℓ2).

In view of (2.12), this implies that D1z(ℓ2) ≥ LcQ(ℓ, ℓ2) → ∞ as ℓ → ∞, and this

contradiction completes the proof.

Next, in our first main result, we show that under a simple condition, any

nonoscillatory solution of (E) converges to zero as ℓ → ∞.

Theorem 2.9. Assume that (H1)–(H4) hold. If

(2.21)
∞∑

ℓ=ℓ0

Q(ℓ, ℓ0)

m1(ℓ)
= ∞,

then any solution {y(ℓ)} of (E) is either oscillatory or limℓ→∞ y(ℓ) = 0.

Proof. Let {y(ℓ)} be an eventually positive solution of (E). Then there exists an

integer ℓ1 ≥ ℓ0 such that y(ℓ−σ) > 0 and y(ℓ− τ) > 0 for all ℓ ≥ ℓ1. Then, z(ℓ) > 0,

and by Lemma 2.1, eight possible cases may occur for ℓ ≥ ℓ1.

Since (2.20) together with (H1) imply that
∑∞

ℓ=ℓ0
Q(ℓ, ℓ0) cannot be bounded, by

Lemma 2.8, cases (1)–(4) cannot hold.

Assume one of the cases (5)–(8) holds. Since z is decreasing, z(∞) = limℓ→∞ z(ℓ)

= c0 with 0 ≤ c0 < ∞. Assume that c0 > 0. Then there is an integer ℓ2 ≥ ℓ1 such

that z(ℓ− τ) ≥ c0 for ℓ ≥ ℓ2, and from (E1), we have

−D4z(ℓ) ≥ Lc0q(ℓ)(1− d(ℓ− τ)).

Then we can easily arrive at the contradiction (2.17) in cases (5) and (7), and the

contradiction (2.19) in case (6). Hence, we conclude that c0 = 0.

If we assume that case (8) holds, then we arrive at (2.20), that is,

−D1z(ℓ) ≥ Lc0Q(ℓ, ℓ2),
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or

−∆z(ℓ) ≥ Lc0
m1(ℓ)

Q(ℓ, ℓ2).

Summing the last inequality from ℓ2 to ℓ− 1 gives

z(ℓ2) ≥ Lc
ℓ−1∑
s=ℓ2

Q(s, ℓ2)

m1(s)
.

But in view of (2.21), the summation on the right-hand side of the last inequality

tends to ∞ as ℓ → ∞, which is a contradiction. Hence, limℓ→∞ z(t) = 0, and since

y(ℓ) ≤ z(ℓ), this implies that limℓ→∞ y(ℓ) = 0. This completes the proof of the

theorem.

In the sequel, we present two theorems on for the oscillation of all solutions of

(E).

Theorem 2.10. Assume that (H1)–(H4) hold. If

(2.22) lim sup
ℓ→∞

Q1(ℓ, ℓ1) >
1

L

for any integer ℓ1 ≥ ℓ0, where

Q1(ℓ, ℓ1) = min{M1(ℓ)Q(ℓ, ℓ1),M3(ℓ)Q(ℓ, ℓ1)},

then (E) is oscillatory.

Proof. Let {y(ℓ)} be an eventually positive solution of (E); then there exists an integer

ℓ1 ≥ ℓ0 such that y(ℓ − σ) > 0 and y(ℓ − τ) > 0 for all ℓ ≥ ℓ1. Now, the sequence

z(ℓ) > 0, and by Lemma 2.1, eight possible cases may occur for ℓ ≥ ℓ1.

First note that, in view of (H1), in order for (2.22) to hold, we must have that

(2.23) Q(∞, ℓ0) = Q(∞, ℓ0) = ∞.

In view of Lemma 2.8, we see that condition (2.23) ensures that cases (1)–(4) of

Lemma 2.1 are impossible. Hence, we shall consider the remaining possible cases

(5)–(8) individually.

Assume that case (5) holds. From Lemma 2.7,

(2.24) D4z(ℓ) + Lq(ℓ)(1− d(ℓ− τ))z(ℓ− τ) ≤ 0,

and from (2.3),

−D1z(ℓ) ≥ M2(ℓ)D2z(ℓ)

or

−∆z(ℓ) ≥ M2(ℓ)

m1(ℓ)
D2z(ℓ).

Summing the above inequality from ℓ to ∞ gives

(2.25) z(ℓ) ≥ D2z(ℓ)
∞∑
s=ℓ

M2(s)

m1(s)
= M12(ℓ)D2z(ℓ).
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Using (2.25) and the increasing property of D2z(ℓ) in (2.24), there exists a constant

c1 > 0 and an integer ℓ2 ≥ ℓ1 such that

−D4z(ℓ) ≥ Lc1q(ℓ)(1− d(ℓ− τ))M12(ℓ− τ), ℓ ≥ ℓ2.

Summing from ℓ2 to ℓ− 1, we obtain

(2.26) D3z(ℓ2) ≥ D3z(ℓ) + Lc1

ℓ−1∑
s=ℓ2

q(s)(1− d(s− τ))M12(s− τ).

Taking (H1) and (2.23) into account, it is easy to see that

∞ = Q(∞, ℓ0) =
∞∑

ℓ=ℓ0

q(s)(1− d(ℓ− τ))
M123(ℓ− τ)

M3(ℓ− τ)

≤
∞∑

ℓ=ℓ0

q(ℓ)(1− d(ℓ− τ))M12(ℓ− τ).(2.27)

Using (2.27) in (2.26), we obtain a contradiction.

Assume that case (6) holds. From Lemma 2.7, we get (2.24). From (2.8) and

(2.9), we have

(2.28) z(ℓ) ≥ M123(ℓ)

M3(ℓ)
D2z(ℓ),

and using (2.28) in (2.24) gives

(2.29) −D4z(ℓ) ≥ Lq(ℓ)(1− d(ℓ− τ))
M123(ℓ− τ)

M3(ℓ− τ)
D2z(ℓ− τ).

Summing (2.29) from ℓ1 to ℓ− 1 and using the monotonicity of D2z(ℓ), we find that

(2.30) −D3z(ℓ) ≥ LD2(ℓ− τ)
ℓ−1∑
s=ℓ1

q(s)(1− d(s− τ))
M123(s− τ)

M1(s− τ)
≥ LD2z(ℓ)Q(ℓ, ℓ1).

From (2.7) and (2.30), we obtain

−D3z(ℓ) ≥ −LM3(ℓ)Q(ℓ, ℓ1)D3z(ℓ).

Dividing both sides by −D3z(ℓ) and then taking the lim sup as ℓ → ∞ on both sides

of the resulting inequality, contradicts (2.22).

Now assume that case (7) holds. From Lemma 2.7, we have (2.28). Summing

(2.24) from ℓ1 to ℓ− 1 and using the fact that { z(ℓ)
M1(ℓ)

} is nonincreasing, we have

D3z(ℓ1) ≥ D3z(ℓ) + L
ℓ−1∑
s=ℓ1

q(s)(1− d(s− τ))z(s− τ)

≥ z(ℓ1)

M1(ℓ1)
L

ℓ−1∑
s=ℓ1

q(s)(1− d(s− τ))M1(s− τ).(2.31)
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On the other hand, using (H1) and (2.27), it is easy to see that for any constant

c2 > 0,

∞ =
∞∑

ℓ=ℓ1

q(ℓ)(1− d(ℓ− τ))M12(ℓ− τ) ≤ c2

∞∑
ℓ=ℓ1

q(ℓ)(1− d(ℓ− τ))M1(ℓ− τ),

which, in view of (2.31), is again a contradiction.

Finally assume that (8) holds. Again from Lemma 2.7, we have (2.24). Summing

(2.24) from ℓ1 to ℓ− 1,

−D3z(ℓ) ≥ L
ℓ−1∑
s=ℓ1

q(s)(1− d(s− τ))z(s− τ) ≥ Lz(ℓ− τ)
ℓ−1∑
s=ℓ1

q(s)(1− d(s− τ)).

Dividing the last inequality by m3(ℓ) and then summing from ℓ1 to ℓ− 1, we obtain

(2.32) −D2z(ℓ) ≥ Lz(ℓ− τ)
ℓ−1∑
s=ℓ1

1

m3(s)

s−1∑
t=ℓ1

q(t)(1− d(t− τ)).

Similarly, we can obtain

−D1z(ℓ) ≥ Lz(ℓ− τ)
ℓ−1∑
s=ℓ1

1

m2(s)

s−1∑
t=ℓ1

1

m3(t)

t−1∑
j=ℓ1

q(j)(1− d(j − τ))

≥ Lz(ℓ)Q(ℓ, ℓ1) ≥ −LM1(ℓ)Q(ℓ, ℓ1)D1z(ℓ),

that is,
1

L
≥ M1(ℓ)Q(ℓ, ℓ1),

which clearly contradicts (2.22). The proof is now complete.

Our final theorem is obtained by using the classical Riccati transformation tech-

nique.

Theorem 2.11. Assume that (H1)–(H4) hold. If for all sufficiently large ℓ1 ≥ ℓ0,

(2.33) lim sup
ℓ→∞

ℓ∑
s=ℓ1

(
Lq(s)(1− d(s− τ))M123(s)−

M23(s)

4m1(s)M123(s+ 1)

)
= ∞

and

(2.34)

lim sup
ℓ→∞

ℓ∑
s=ℓ1

(
LM1(s+ 1)

m2(s)

s−1∑
t=ℓ1

1

m3(t)

t−1∑
j=ℓ1

q(j)(1− d(j − τ))− 1

4M1(s)m1(s)

)
= ∞,

then (E) is oscillatory.

Proof. Let {y(ℓ)} be an eventually positive solution of (E) such that y(ℓ−τ) > 0 and

y(ℓ − σ) > 0 for all ℓ ≥ ℓ1 ≥ ℓ0. Then z(ℓ) > 0 and by Lemma 2.1, there are eight

possible cases that may occur for ℓ ≥ ℓ1.
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From (2.34), we see that

∞∑
ℓ=ℓ1

M1(s)

m2(s)

ℓ−1∑
s=ℓ1

1

m3(s)

s−1∑
t=ℓ1

q(t)(1− d(t− τ)) = ∞,

which, in view of condition (H1) implies that Q(∞, ℓ0) = ∞. Thus, by Lemma 2.8,

cases (1)–(4) in Lemma 2.1 cannot hold, so we will consider cases (5)–(8) one at a

time.

Let case (5) hold. From (2.33), we have

∞∑
ℓ=ℓ0

q(ℓ)(1− d(ℓ− τ))M123(ℓ) = ∞.

Then arguing as in the proof of Theorem 2.10 for case (5), we arrive at a contradiction.

Assume that case (6) holds. Define the sequence

w(ℓ) =
D3z(ℓ)

z(ℓ)
< 0, ℓ ≥ ℓ1.

Combining (2.7) and (2.28), we obtain

(2.35) −1 ≤ w(ℓ)M123(ℓ).

Also, from (2.7) and (2.8),

(2.36) −∆z(ℓ) ≥ −M23(ℓ)

m1(ℓ)
D3z(ℓ).

Now by (2.24), (2.36), and the monotonicity of {z(ℓ)}, we see that

∆w(ℓ) =
D4z(ℓ)

z(ℓ+ 1)
− D3z(ℓ)∆z(ℓ)

z(ℓ)z(ℓ+ 1)

≤ −Lq(ℓ)(1− d(ℓ− τ))
z(ℓ− τ)

z(ℓ+ 1)
− (D3z(ℓ))

2M23(ℓ)

m1(ℓ)z2(ℓ)

≤ −Lq(ℓ)(1− d(ℓ− τ))− M23(ℓ)

m1(ℓ)
w2(ℓ),

or

∆w(ℓ) + Lq(ℓ)(1− d(ℓ− τ)) +
M23(ℓ)

m1(ℓ)
w2(ℓ) ≤ 0.

Multiplying the above inequality by M123(ℓ+1) and summing the resulting inequality

from ℓ1 to ℓ− 1, we obtain

(2.37)
ℓ−1∑
s=ℓ1

M123(s+ 1)∆w(s) + L
ℓ−1∑
s=ℓ1

M123(s+ 1)q(s)(1− d(s− τ))

+ L

ℓ−1∑
s=ℓ1

M123(s+ 1)M23(s)
w2(s)

m1(s)
≤ 0.



NEW OSCILLATION RESULTS 95

Now, applying the summation by parts formula and then rearranging terms, we have

w(ℓ)M123(ℓ)− w(ℓ1)M123(ℓ1) +
ℓ−1∑
s=ℓ1

LM123(s+ 1)q(s)(1− d(s− τ))

+
ℓ−1∑
s=ℓ1

M123(s)

m1(s)
w(s) +

ℓ−1∑
s=ℓ1

M23(s)M123(s+ 1)

m1(s)
w2(s) ≤ 0.(2.38)

Using completing the square and then applying (2.35) leads to

ℓ−1∑
s=ℓ1

(
Lq(s)M123(s+ 1)(1− d(s− τ))− M23(s)

4m1(s)M123(s+ 1)

)
≤ w(ℓ1)M123(ℓ1) + 1 < ∞,

which contradicts (2.33) as ℓ → ∞.

Assume now that case (7) holds. Note that

∞∑
ℓ=ℓ0

q(ℓ)(1− d(ℓ− τ))M123(ℓ) = ∞

is necessary for (2.33) to hold. Then, for any constant c3 > 0, we have

(2.39) ∞ =
∞∑

ℓ=ℓ0

q(ℓ)(1− d(ℓ− τ))M123(ℓ) ≤ c3

∞∑
ℓ=ℓ0

q(ℓ)(1− d(ℓ− τ))M12(ℓ).

Proceeding as in the proof of case (7) in Theorem 2.10, we obtain a contradiction.

Finally assume that case (8) holds. Define

v(ℓ) =
D1z(ℓ)

z(ℓ)
< 0.

From (2.32), we have

(2.40) −D2z(ℓ) ≥ Lz(ℓ+ 1)
ℓ−1∑
s=ℓ1

1

m3(s)

s−1∑
t=ℓ1

q(t)(1− d(t− τ)).

On the other hand, from the monotonicity of D1z(ℓ), we have

(2.41) z(∞)− z(ℓ) =
∞∑
s=ℓ

D1z(s)

m1(s)
≤ M1(ℓ)D1z(ℓ)

or

(2.42) −1 ≤ v(ℓ)M1(ℓ) < 0.

Using (2.40) we obtain

∆v(ℓ) =
D2z(ℓ)

m2(ℓ)z(ℓ+ 1)
− (D1z(ℓ))

2

m1(ℓ)z(ℓ)z(ℓ+ 1)

≤ −L

m2(ℓ)

ℓ−1∑
s=ℓ1

1

m3(s)

s−1∑
t=ℓ1

q(t)(1− d(t− τ))− v2(ℓ)

m1(ℓ)
.
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Multiplying the last inequality by M1(ℓ+1) and then summing from ℓ1 to ℓ− 1 gives

v(ℓ)M1(ℓ)− v(ℓ1)M1(ℓ1) +
ℓ−1∑
s=ℓ1

LM1(s+ 1)

m2(s)

s−1∑
t=ℓ1

1

m3(t)

t−1∑
j=ℓ1

q(j)(1− d(j − τ))

+
ℓ−1∑
s=ℓ1

v(s)

m1(s)
+

ℓ−1∑
s=ℓ1

M1(s+ 1)
v2(s)

m1(s)
≤ 0.

Completing the square and then using (2.42), we obtain

ℓ−1∑
s=ℓ1

(
LM1(s+ 1)

m2(s)

s−1∑
t=ℓ1

1

m3(t)

t−1∑
j=ℓ1

q(j)(1− d(j − τ))− 1

4m1(s)M1(s+ 1)

)
≤ 1 +M1(ℓ1)v(ℓ1),

which contradicts (2.34) and completes the proof.

3. Examples

In this section, we provide two examples to illustrate the applicability and novelty

of our results.

Example 3.1. Consider the fourth-order neutral delay difference equation

(3.1) ∆(ℓ(ℓ+ 1)∆(ℓ(ℓ+ 1)∆(ℓ(ℓ+ 1)∆z(ℓ)))) + q0ℓ
2y(ℓ− 2) = 0, ℓ ≥ 2,

where z(ℓ) = y(ℓ) + 1
16
y(ℓ − 1) and q0 > 0. Here we have m1(ℓ) = m2(ℓ) = m3(ℓ) =

ℓ(ℓ + 1), p(ℓ) = 1/16, q(ℓ) = q0ℓ
2, σ = 1, τ = 2, and f(y) = y. Simple calculations

show that M1(ℓ) = M2(ℓ) = M3(ℓ) = 1/ℓ, M12(ℓ) ≈ 1/2ℓ2 = M23(ℓ), and M123(ℓ) ≈
1/6ℓ3. Furthermore, d(ℓ) = 1

16
and L = 1. It is easy to see that Q(ℓ, 2) ≈ 5q0

32
ℓ → ∞

as ℓ → ∞. Therefore, by Theorem 2.9, nonoscillatory solutions of (3.1) converge to

zero as ℓ → ∞.

Example 3.2. Consider the equation

(3.2) ∆(ℓ(ℓ+ 1)∆(ℓ(ℓ+ 1)∆(ℓ(ℓ+ 1)∆z(ℓ)))) + q0ℓ
2y(ℓ− 2)(1 + y2(ℓ− 2)) = 0,

where z(ℓ) = y(ℓ) + 1
16
y(ℓ − 1), q0 > 0, and ℓ ≥ 2. Here we have f(y) = y(1 + y2),

Q(ℓ, 2) = Q̄(ℓ, 2) ≈ 5q0ℓ
32

, and the other quantities are as in the previous example.

Condition (2.22) becomes

lim sup
ℓ→∞

5q0ℓ

32ℓ
=

5q0
32

> 1,

so that (2.22) is satisfied if q0 > 6.4. Therefore, by Theorem 2.10, equation (3.2) is

oscillatory if q0 > 6.4. The same conclusion follows from Theorem 2.11 if q0 > 4.8.

Thus, Theorem 2.11 gives a better condition than Theorem 2.10.
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4. Conclusion

In this paper, we first found the relationship between a solution {y(ℓ)} and the

sequence {z(ℓ)} in the case where z(ℓ) satisfies one of the eight different conditions

in Lemma 2.1. Using these relationships, we obtained sufficient conditions for the

oscillation of all solutions of (E). Notice that using the method developed in this

paper, it would also be possible to obtain oscillation criteria for equation (E) in the

cases where the equation is one of the semi-noncanonical types

M1(ℓ0) = ∞, M2(ℓ0) < ∞, and M3(ℓ0) < ∞,

or

M1(ℓ0) < ∞, M2(ℓ0) < ∞, and M3(ℓ0) = ∞,

or

M1(ℓ0) < ∞, M2(ℓ0) = ∞, and M3(ℓ0) < ∞.

This is left for future research. Also notice that none of the results currently in

the literature when applied to equations (3.1) or (3.2) can yield the oscillation of all

solutions since these equations are not canonical. It would be of interest to extend

the results here to the cases where the neutral coefficient p(ℓ) ≥ 1, p is nonpositive, or

if p is unbounded. (For a discussion of how different values of p affect the oscillatory

behavior of solutions of neutral difference equations, we refer the reader to [22].)
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